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Abstract

This paper investigates the identification and inference of treatment effects in ran-

domized controlled trials with social interactions. Two key network features characterize

the setting and introduce endogeneity: (1) latent variables may affect both network for-

mation and outcomes, and (2) the intervention may alter network structure, mediating

treatment effects. I make three contributions. First, I define parameters within a post-

treatment network framework, distinguishing direct effects of treatment from indirect

effects mediated through changes in network structure. I provide a causal interpretation

of the coefficients in a linear outcome model. For estimation and inference, I focus on

a specific form of peer effects, represented by the fraction of treated friends. Second,

in the absence of endogeneity, I establish the consistency and asymptotic normality of

ordinary least squares estimators. Third, if endogeneity is present, I propose addressing

it through shift-share instrumental variables, demonstrating the consistency and asymp-

totic normality of instrumental variable estimators in relatively sparse networks. For

denser networks, I propose a denoised estimator based on eigendecomposition to restore

consistency. Finally, I revisit Prina (2015) as an empirical illustration, demonstrating

that treatment can influence outcomes both directly and through network structure

changes.
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random graph, shift-share instrument variable.
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1 Introduction

Peer effects have been extensively studied in the economics literature. However, identifying

these effects can be challenging without randomized experiments. Recent research has

integrated peer effects with randomized controlled trials (RCTs) to improve their identification

across various fields, including education, microfinance, public health, agriculture, and social

psychology.1 These studies go beyond direct effects, exploring how interventions spread

through social interaction, potentially amplifying or dampening their impact. This introduces

a phenomenon known as “interference.”2 The literature on spillover effects often assumes

exogenous networks, where no latent variables influence both network formation and outcomes,

and the network remains unchanged after the intervention. However, empirical evidence

suggests that networks can be endogenous even in randomized experiments, as latent variables

may influence both network formation and outcomes, and treatment can alter the network

structure. Motivated by these concerns, this paper investigates the identification and inference

of causal effects in RCTs with interference, accounting for both sources of endogeneity.

Many empirical studies suggest that network structures are influenced by latent variables

and evolve in response to interventions. For example, Prina (2015) conducted an RCT offering

savings accounts to villagers in Nepal and found significant network changes before and after

the intervention. Similarly, Banerjee et al. (2023) found that introducing formal financial

institutions in Indian villages reduced social connections, as access to formal institutions

diminished the need for social ties, demonstrated through both an observational study and

an RCT. Barnhardt et al. (2017) analyzed a housing lottery program designed to improve

housing situations but found that it increased isolation from family and exacerbated financial

insecurity. Likewise, Carrell et al. (2013) conducted a group formation experiment to improve

low-ability students’ performance, but the intervention backfired as low-ability students

formed stronger bonds with similar peers, worsening their outcomes.

In empirical studies, researchers often rely on pre-intervention network data to fit regres-

sions or control for unobserved confounders (Carter et al., 2021). However, this approach can

be problematic. When post-intervention networks ultimately influence outcomes, relying on

pre-intervention networks introduces measurement error. Conversely, using post-intervention

networks, which are shaped by both treatment and latent variables, introduces endogeneity

1See, for example, Sacerdote (2001), Miguel and Kremer (2004), Sobel (2006), Banerjee et al. (2013), Cai
et al. (2015) and Paluck et al. (2016)

2The term “interference” originates from the assumption of no interference between individuals in the
potential outcomes framework for causal inference (Cox, 1958; Rubin, 1980). It initially referred to how
spillover effects disrupted or “interfered with” the standard comparison between treated and untreated groups,
complicating the estimation of direct treatment effects. However, the concept of interference has evolved,
and in many contexts, it now encompasses situations where spillover effects are not just nuisances but are
themselves of primary interest.
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issues, even in randomized experiments. Specifically, treatment-induced changes in the

network make it challenging to disentangle the direct effects of treatment from the indirect

effects mediated by changes in network structure. Separating these effects is crucial for un-

derstanding the mechanisms of the intervention and designing effective policies. Furthermore,

latent variables complicate the identification and estimation of causal effects, potentially

leading to biased and inconsistent estimates of causal effects. This paper demonstrates a

novel approach to utilizing panel network data for separating and consistently estimating

these effects by fitting the regression with post-intervention network data while constructing

instrumental variables from pre-intervention network data.

To account for network evolution induced by the intervention, I apply the mediation

analysis framework (Pearl, 2001; Heckman and Pinto, 2015) to distinguish the direct effects

of treatment from the indirect effects mediated by changes in network structure. Researchers

often use effective treatment, also known as exposure mapping, for dimensionality reduction

(Manski, 2013; Aronow and Samii, 2017). This low-dimensional statistic captures interference

patterns by mapping units, treatment assignments, and network structures to the exposures

each unit receives. In my context, since the network is a post-treatment variable, I treat

the exposure mapping as a mediator transmitting the indirect effect of the treatment on the

outcome. I define the causal parameters within this framework, distinguishing between the

direct effect of the treatment on the outcome and the indirect effect mediated by changes in

the network. I assume a linear outcome model that incorporates both the treatment and the

network mediator while allowing for additive and flexible forms of unobserved confounding.

In this model, the coefficients have clear causal interpretations, and the framework can be

applied to any mediator.

For estimation and inference, I focus on a specific mediator defined as the fraction of

treated friends. This approach aligns with the anonymous interference assumption from

Hudgens and Halloran (2008) and Manski (2013). Consequently, the linear model considered

in this paper represents a special case of the linear-in-means (LIM) model (Manski, 1993;

Blume et al., 2015), focusing on contextual peer effects, which captures the mean impact of

friends’ treatments. Within this LIM framework, the endogeneity issue arises only when both

conditions are met: the network depends on the treatment but is not mean-independent, and

an unobserved confounder is present. Although this paper focuses on a specific form of peer

effects, the discussion of the SSIV relevance condition offers valuable insights into other types

of peer effects.

When no endogeneity is present, I propose using OLS estimation with post-intervention

network data. I demonstrate the consistency and asymptotic normality of the OLS estimators

across different levels of network sparsity. With the fraction mediator, I handle the diminishing

variation of the regressor in denser networks and find that treatment-induced network changes
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can increase sample variation in the fraction and enhance the convergence rate. Additionally,

I demonstrate that the standard heteroskedasticity-consistent variance estimator ensures valid

inference, even with dependent regressors and nonstandard convergence rates in estimation.

When unobserved confounders are present, I address endogeneity using shift-share (or

“Bartik”) instrumental variables (SSIV) (Bartik, 1991). The SSIV mitigates endogeneity

by combining a set of shocks using exposure share weights. This paper extends the shift-

share design to the network setting by constructing the IV as a combination of the random

shock (others’ treatment assignments) and non-exogenous exposure (pre-intervention network

structure), following Borusyak and Hull (2023). I provide a thorough examination of the

conditions required for a valid IV, with particular emphasis on the relevance condition

across varying levels of sparsity. I demonstrate that the relevance condition for SSIV fails

as networks become denser, as increased overlap in friendships reduces variation in SSIV

across units, which limits its effectiveness as an instrument for the endogenous network

mediator. Specifically, I show that IV estimators using SSIV are consistent in relatively sparse

networks. In denser networks, where IV estimators using SSIV may be inconsistent, I adapt

the approach of Li and Wager (2022) to propose an eigendecomposition-based denoised SSIV

estimator for consistent estimation. Furthermore, I establish the asymptotic normality of the

IV estimators using both SSIV and modified SSIV and provide consistent variance estimators

that account for unit dependencies introduced by the SSIV, ensuring valid inference.

I present simulation evidence supporting my theoretical results for both OLS and IV

estimators using SSIV and modified SSIV. These results are derived in an asymptotic

framework where networks are modeled as random graphs with varying sparsity rates. The

estimation results across various sample sizes and sparsity levels confirm the asymptotic

results of my theoretical analysis.

For empirical illustration, I revisit Prina (2015), which offered access to formal savings

accounts to a random sample of female household heads in 19 villages in Nepal. My results

demonstrate that IV estimation effectively addresses the endogeneity issue arising from

unobserved confounders. Results from IV estimation and the OLS estimates in Prina (2015)

can differ in both sign and significance when the indirect effect is significant. Additionally, I

find that the intervention influences various outcomes through multiple channels: some are

directly impacted by the treatment, while others operate through changes in the network

mediator, which captures patterns of interference.

Related Literature

First, it builds on the peer effects literature, which explores how individuals’ outcomes

are shaped by their peers’ behaviors, actions, or characteristics. The standard empirical
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framework for peer effects is the LIM model, which assumes that agents are influenced by the

average actions of their peers. The seminal work of Manski (1993) formalizes the reflection

problem, highlighting the difficulty of disentangling endogenous peer effects from correlated

and contextual influences within the LIM framework. Bramoullé et al. (2009) extend this line

of inquiry by characterizing the identification conditions for peer effects in network settings,

providing crucial insights for empirical applications. In a critical review of the literature,

Angrist (2014) scrutinizes various econometric methods and empirical studies on peer effects,

offering sharp critiques of existing approaches and underscoring key challenges in this field.

The literature outlines four broad strategies for identifying peer effects while accounting

for correlated effects: random peers, random shocks, structural endogeneity, and panel data

(Bramoullé et al., 2020). Researchers estimate causal peer effects by studying contexts with

randomly assigned peers, through natural or artificial experiments (Sacerdote, 2001; Carrell

et al., 2013; De Giorgi et al., 2010). Identification relies on the fact that random assignment

ensures an agent’s characteristics, both observed and unobserved, are uncorrelated with

those of her peers. When peers are not random, researchers seek to identify peer effects

using other sources of exogenous variation, such as randomized interventions or quasi-random

experiments (Dieye et al., 2014; Nicoletti et al., 2018; De Giorgi et al., 2020; Arduini et al.,

2020). In the absence of a clear source of exogenous variation, researchers have developed

structural frameworks to address correlated effects and identify peer effects in networks

(Goldsmith-Pinkham and Imbens, 2013; Graham, 2015, 2017; Hsieh and Lee, 2016; Hsieh

et al., 2019; Johnsson and Moon, 2019), employing methods such as Bayesian approaches

and control function techniques. Combined with panel data, the inclusion of individual fixed

effects enables researchers to control for agents’ time-invariant unobserved characteristics,

helping to address issues of correlated effects (Arcidiacono et al., 2012; De Giorgi et al., 2020;

Comola and Prina, 2021; de Paula et al., 2023).

This paper contributes to the peer effects literature by leveraging randomized treatment

and panel network data in a novel way for identification and estimation, accounting for

treatment-induced network changes. Specifically, I combine randomized treatments and

pre-intervention networks to construct SSIV, instrumenting endogenous variables from the

post-intervention network. This approach is conceptually similar to the use of lagged variables

as instruments in panel data models, as developed by Arellano and Bond (1991) and later

expanded by Bun and Sarafidis (2015). By incorporating pre-intervention networks into the

SSIV framework, I aim to address potential endogeneity issues while capturing the dynamic

evolution of network structures over time. The most related work is Comola and Prina (2021),

who study interventions that impact network structure. They allow for endogenous peer effects

but assume conditional exogeneity of pre- and post-intervention networks, addressing different

endogeneity sources. They adapt “lagged” partner characteristics as instruments, focusing
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on identification conditions rather than asymptotic properties. Other recent studies explore

dynamic networks, often focusing on edge-level variables. Auerbach (2022a) develops a test

to assess how treatments like social programs or trade shocks impact network link formation,

while Auerbach and Cai (2023) examine social disruption by analyzing the formation and

dissolution of network connections in response to policy using a random or quasi-random

assignment framework.

Second, I contribute to the shift-share IV literature by demonstrating the relevance

condition of SSIV across a broad range of network sparsity regimes. Shift-share specifications

are increasingly common in many contexts, including labor, public, development, macroeco-

nomics, international trade, and finance; see Card (2009), Autor et al. (2013), Nakamura and

Steinsson (2014), Bourveau et al. (2020) and Breuer (2022). There are two main approaches

to identification in the SSIV literature. Bartik (1991) and Goldsmith-Pinkham et al. (2020)

suggest identification based on the exogeneity of the exposure shares. In contrast, Borusyak

et al. (2022) suggest identification through the quasi-random assignment of shocks, which

allows for endogenous exposure shares, as do Adão et al. (2019) and Borusyak and Hull

(2023). Adão et al. (2019) investigate inference in shift-share regression designs and develop

new results for the inference that remain valid even in the presence of arbitrary cross-regional

correlation in the regression residuals. Their findings suggest that cluster-robust standard er-

rors, commonly reported in such settings, may lead to the overrejection of the null hypothesis.

Borusyak and Hull (2023) extend the SSIV idea to the nonlinear case, where multiple sources

of variation are combined according to a known formula. However, these papers impose a

key condition for the relevance of SSIV to hold. Specifically, most observations are primarily

exposed to a small number of shocks influencing treatment. In this paper, I characterize the

regimes in which the relevance condition holds, ensuring that IV estimators with SSIV lead

to consistent estimation. I also establish a connection to the work of Li and Wager (2022),

noting that their estimator for indirect effects fundamentally employs the SSIV approach to

address the endogeneity issue of unobserved confounding.

Third, I contribute to the interference literature by accounting for stochastic and treatment-

induced network. The concept of “interference” challenges the “stable unit treatment value

assumption” (SUTVA), a foundational principle of classical causal inference that assumes no

interference between units (Cox, 1958; Rubin, 1980; Imbens and Rubin, 2015). The existing

literature on estimating treatment effects under interference primarily follows a design-based

approach (Hudgens and Halloran, 2008; Aronow and Samii, 2017; Abadie et al., 2020; Leung,

2022; Gao and Ding, 2023). It makes no assumptions about outcome models and network

formation, and inference is based on random treatment assignment. Given the stochastic

nature of networks, it is natural to question how this affects inference. Recent studies

have started exploring the impact of network stochasticity by modeling network graphs as
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realizations from an (unknown) graphon. For example, Leung (2020) analyzes nonparametric

and regression estimators for treatment and spillover effects in sparse networks, while Li

and Wager (2022) examines the asymptotics of treatment effect estimation under network

interference, allowing for arbitrary dependencies on unobserved latent variables. However,

these studies do not consider how treatment-induced changes in network structure further

influence causal effects. Many studies on interference assume partial interference, with units

divided into clusters where interference occurs only within each cluster (Sobel, 2006; Hudgens

and Halloran, 2008; Tchetgen and VanderWeele, 2012; Liu et al., 2019). In contrast, this

paper examines a single large network, allowing for arbitrary interference patterns.

Our paper also relates to the literature on mediation analysis (Vanderweele et al., 2013;

Pearl, 2001; Heckman and Pinto, 2015; Cheng et al., 2022) by treating exposure mapping

as a mediator, accounting for post-intervention network changes. Previous studies propose

regression estimators for latent mediation but often lack rigorous asymptotic theory or causal

interpretation (Che et al., 2021; Liu et al., 2021; Di Maria et al., 2022). Hayes et al. (2023)

consider latent network positions while excluding interference, while Sweet (2018), Sweet and

Adhikari (2020), and Guha and Rodriguez (2021) treat entire networks as mediators.

Organization of the paper In Section 2, I introduce the framework, define the parameters

of interest, and provide the identification results. In Section 3, I discuss the endogeneity issue

associated with the fraction mediator and the common practice of using pre-intervention

network data to mitigate it. In Section 4, I explore estimation across various cases. I first

present the asymptotic properties of OLS estimators in the absence of endogeneity. I then

account for unobserved confounders and employ SSIV for estimation, analyzing its asymptotic

properties. Additionally, I propose a modification to SSIV for cases where the network gets

denser. Section 5 presents the results of the Monte Carlo simulations. Section 6 illustrates

the results in an empirical application based on the RCT in Prina (2015). Section 7 offers

the concluding remarks. The appendix of the paper collects all of the proofs, as well as some

intermediate results.

Notation I use O(), OP(), oP(),≍,≻,≺,≽,≼ in the following sense: an = O(bn) if |an| ≤
Cbn for n large enough; Xn = OP(bn), if for any δ > 0, there exists M,N > 0, s.t. P[|Xn| ≥
Mbn] ≤ δ for any n > N ; Xn = oP(bn), if limP[|Xn| ≥ εbn] → 0 for any ε > 0; an ≍ bn if

there exists k1, k2 > 0 and n0, s.t. for all n > n0, k1an ≤ bn ≤ k2an; an ≻ bn if lim an/bn = ∞;

an ≺ bn if lim an/bn = 0; an ≽ bn if bn = O(an); an ≼ bn if an = O(bn). Let 1n−1 represent a

vector of ones with n− 1 elements, and 0n−1 represent a vector of zeros with n− 1 elements.

Let ∥ ·∥op denote the operator norm. Define Ewi
(·) as the expectation taken over the marginal

distribution of wi. Let X−i represent the set {Xj}j ̸=i. The abbreviation “i.i.d.” stands for
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“independent and identically distributed.”

2 Setup

2.1 Framework and Notation

I consider an RCT with n participants. For each participant i ∈ {1, . . . , n}, let Yi ∈ R
denote the observed outcome of interest, Ti ∈ {0, 1} denote the treatment assignment where

Ti ∼ Bernoulli(π) for some 0 < π < 1, and wi denote the unobserved covariates. I consider a

single large network, allowing for an arbitrary form of interference within it. The network

structure is represented by an adjacency matrix A = {Aij}ni,j=1, where the (i, j)th entry

Aij ∈ {0, 1} indicates whether units i and j are connected. The adjacency matrix is assumed

to be undirected (symmetric), unweighted (binary values), and has no self-links (Aii = 0). I

differentiate between two network structures: Apre, which represents the network observed

before the intervention, and Apost, which corresponds to the network observed after the

intervention. I assume the researchers observe both Apre and Apost.

Figure 1 illustrates the causal mechanism considered in this paper.3 I assume that the

post-intervention network Apost, influenced by the treatment vector, plays a critical role in

determining the outcome. Consequently, the exposure mapping, also known as the effective

treatment, which maps {Ti}ni=1 and Apost to some low-dimensional statistics, serves as a

mediator through which the treatment indirectly affects the outcome. I denote this mediator

as Mi. Specifically, I assume that Ti has both a direct effect on Yi and an indirect effect

through changing network mediator Mi. The network Apost is shaped by both the treatments

and the latent variable wi, which may also influence the outcome. As a result, wi acts as a

confounder between the mediator and the outcome. The treatments of other units T−i affect

Yi exclusively through the network mediator Mi.

Mediators can take various forms. For example:

Mi =

∑n
j=1A

post
ij Tj∑n

j=1A
post
ij

, (1)

which measures the fraction of treated friends after the intervention. This mediator depends

solely on the number of (treated) friends, regardless of their identity. It is a specific form

of the anonymous interference assumption proposed by Hudgens and Halloran (2008), also

referred to as the anonymous interactions assumption by Manski (2013). Other examples of

anonymous interference include:

3I use the graph for illustration without using formal graphical language.
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Ti

T−i

w−i

Mi Yi

wi

Figure 1: Causal mechanism.

(1) Mi =
∑n

j=1A
post
ij Tj, which measures the total number of treated friends after the inter-

vention;

(2) Mi = 1{
∑n

j=1A
post
ij Tj > 0}, which measures whether there is at least one treated friend

after the intervention.

Potential Value Notation

To define the causal parameters of interest, I introduce the potential value notations for the

mediator and the outcome, following the mediation analysis literature (Robins and Greenland,

1992; Pearl, 2001; Heckman and Pinto, 2015). First, I consider a hypothetical intervention on

the treatment vector t and define the potential values of the mediators for unit i corresponding

to this intervention as:

{Mi(t) : t ∈ {0, 1}n} ,

Note that potential mediator Mi(t) depends on the treatment vector t in two ways: it is a

direct function of t and the network structure Apost, which implicitly depends on t as well. I

then consider a hypothetical intervention on both ti and mi. Define the potential outcomes

corresponding to the interventions on ti and mi =Mi(ti, t−i) for unit i as:

{Yi(ti,mi) : ti ∈ {0, 1},mi ∈ M} ,

where M contains all possible values of mi. This notation reflects that the potential outcome

Yi(ti,mi) depends not only on ti, the treatment assignment of unit i, but also on the network

changes induced by the intervention, as captured by the functionMi. Additionally, it indicates

that the treatment assignments of others influence the potential outcome of individual i only

indirectly through the mediatorMi. I also define the nested potential outcomes corresponding
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to an intervention on ti and mi =Mi(t
′
i, t−i) as:{

Yi(ti,Mi(t
′
i, t−i)) : ti ∈ {0, 1}, t′i ∈ {0, 1}, t−i ∈ {0, 1}n−1

}
.

The notation Yi(ti,Mi(t
′
i, t−i)) represents the hypothetical outcome when the treatment is

set to level ti and the mediator is set to its potential value Mi(t
′
i, t−i), corresponding to

the treatments t′i for unit i and t−i for the other units. I allow ti and t
′
i to differ to define

counterfactual outcomes where either the treatment level or the mediator level changes, while

the other remains fixed. This approach enables the separation of the two channels through

which the treatment affects the outcome, either directly or indirectly. The observed values of

the mediator Mi and the outcome Yi are related to their potential values as follows:

Mi =Mi(ti, t−i) if Ti = ti and T−i = t−i,

and

Yi = Yi(ti,mi) if Ti = ti and Mi = mi.

Remark 2.1. The interference literature typically defines potential outcomes as a function

of the treatment vector (Hudgens and Halloran, 2008):

{
Yi(ti, t−i) : ti ∈ {0, 1}; t−i ∈ {0, 1}n−1

}
,

which does not account for how an individual’s treatment affects their exposure to others in

the network, thereby indirectly influencing the outcome. Specifically, it cannot capture the

scenario where the treatment or mediator levels change while the other remains fixed, i.e.,

when ti ̸= t′i. The expression Yi(ti,Mi(t
′
i, t−i)) nests Yi(ti, t−i) as a special case when ti = t′i

and Mi = t−i. In the causal graph shown in Figure 1, the arrow from Ti to Mi would be

omitted if the treatment does not affect the network.

Data-Generating Process for Networks

I specify that the relationship between unit i and j before and after the intervention is

determined by the following random graph models:

Apre
ij = 1 {ηij ≤ qpren gpre(wi, wj)} 1{j ̸= i}, (2)

Apost
ij = 1

{
ηij ≤ qpostn gpost(wi, wj, Ti, Tj)

}
1{j ̸= i}, (3)

where {wi}ni=1 are the i.i.d. latent variables and {ηij}ni,j=1 is a symmetric matrix of unobserved

scalar disturbances with upper diagonal entries that are mutually independent. I allow the
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sparsity parameters, qpren and qpostn , to differ after the intervention for generality. The pre-

intervention graphon, gpre, depends on the latent variable of the pairs, wi and wj, while

the post-intervention graphon, gpost, also incorporates the treatment assignments Ti and

Tj in forming links. Since the idiosyncratic term ηij and the latent variable wi are not

time-varying, the framework to account for cases where the network remains unchanged

after the intervention, with gpre = gpost.4 Changes in the network are primarily attributed

to the intervention, while exogenous shocks unrelated to the intervention are reflected in

the difference between gpre and gpost. Thus, the network formation described in (2) and (3)

captures the features that network formation is driven by latent variables and may evolve

over time, with changes induced by the intervention.

Remark 2.2. The latent variable wi may be either a scalar or a vector, with the key

requirement being a common or correlated component that influences both the pre- and

post-intervention networks. This relationship ensures that the pre-intervention network is

predictive of the post-intervention network, allowing it to serve as an instrument.

The distribution of ηij is not separately identified from the graphons and sparsity param-

eters, so it is typically normalized to follow a standard uniform distribution. As a result,

q⋄ng
⋄ represents the probability that a given pair is connected, for ⋄ ∈ {pre, post}. The

graphon-based network model in (2) and (3), which takes the form of an inhomogeneous

Erdős-Rényi graph, is motivated by Aldous-Hoover Theorem on exchangeable arrays (Aldous,

1981; Lovász and Szegedy, 2006; Bickel and Chen, 2009) and has recently gained considerable

attention in econometrics (Gao et al., 2015; Zhang et al., 2017; Graham, 2020; Parise and

Ozdaglar, 2023). Recent studies have also employed this model to account for randomness

in network formation; see Auerbach (2022b), Cai (2022), and Li and Wager (2022). The

sparsity parameters q⋄n, for ⋄ ∈ {pre, post}, serve as theoretical tools, (possibly) driving the

probability of any pair being connected to zero as n→ ∞. The goal of this paper is to derive

theoretical results across a broad range of sparsity rates, encompassing the following three

cases:

(a) q⋄n ≍ n−1 (bounded degree graph): the total number of friends for each unit remains

bounded and not vanishing in expectation;

(b) limn→∞ q⋄n = 0 and limn→∞ nq⋄n = ∞ (sparse graph): the probability of any pair forming

a connection decreases as the sample size increases, while the total number of friends for

each unit would increase in expectation;

4The assumption that ηij is not time-varying can be relaxed. Specifically, ηij in the pre- and post-
intervention networks can be treated as independent draws from the same underlying distribution or as draws
from correlated distributions. The conjecture is that the SSIV constructed based on Apre may be weaker, as
additional exogenous shocks reduce its relevance.
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(c) q⋄n ≍ 1 (dense graph): the total number of friends for each unit is approximately of order

n in expectation, growing at the same rate as the sample size.

I summarize the assumption on the network models below.

Assumption 1. The latent variables {wi}ni=1 are i.i.d. and independent of {ηij}ni,j=1, where

ηij
i.i.d.∼ U [0, 1] for j > i and ηij = ηji. The networks are randomly generated according to

equations (2) and (3), where gpre is a symmetric measurable function of wi and wj , and g
post

is a symmetric measurable function of (Ti, wi) and (Tj, wj), both mapping into [0, 1]. The

sparsity parameters satisfy n−1 ≼ q⋄n ≼ 1, for ⋄ ∈ {pre, post}.

2.2 Parameters of Interest and Identification

Now I define the causal parameters of interest in my setting.

Definition 1. For t ∈ {0, 1}, define

(1) the average total effect ToE of unit i’s treatment as

ToE = E [Yi (1,Mi (1, T−i))− Yi (0,Mi (0, T−i))] ; (4)

(2) the average direct effect DE(t) of unit i’s treatment as

DE(t) = E [Yi (1,Mi (t, T−i))− Yi (0,Mi (t, T−i))] ; (5)

(3) the average indirect effect IE(t) of unit i’s treatment as

IE(t) = E [Yi (t,Mi (1, T−i))− Yi (t,Mi (0, T−i))] ; (6)

(4) the average spillover effect SE(t) as

SE(t) = E [Yi (t,Mi (ti = t, t−i = 1n−1))− Yi (t,Mi (ti = t, t−i = 0n−1))] . (7)

The average total effect ToE measures the average overall effect of changing the treatment

of unit i on that unit’s outcome. I then decompose the ToE into two channels: one without

changes in the mediator and the other through changes in the mediator. The average direct

effect DE(t) captures the former, measuring the average effect of changing the treatment of

unit i, while keeping the mediator at the level it would have taken if Ti had been set to t. The

average indirect effect IE(t) captures the latter, measuring the average effect of changing the

treatment of unit i solely through its impact on the mediator while keeping the intervention
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on unit i at level t. The average spillover effect SE(t) measures the effect on unit i’s outcome

of assigning everyone else to the treatment group versus the control group, while holding unit

i’s treatment status fixed at level t.5 In defining these causal effects, the expectation is taken

over all sources of randomness, including potential outcomes and the treatment assignments

of others.

Remark 2.3. The existing literature on interference typically defines the direct and indirect

effects of a binary treatment, based on the potential outcome notation in Remark 2.1. For

example, Hu et al. (2022) defined the average direct effect of a binary treatment as:

τade =
1

n

n∑
i=1

E [Yi(ti = 1, T−i)− Yi(ti = 0, T−i)] ,

and the average indirect effect as:

τaie =
1

n

n∑
i=1

∑
j ̸=i

E [Yj(ti = 1, T−i)− Yj(ti = 0, T−i)] . (8)

The estimand τade corresponds to the ToE in (4). To better understand the intervention

mechanism, I further decompose the effect of Ti on Yi into the DE(t) in (5) and the IE(t) in

(6), which operates through changes in the mediator.

The mediation formula relies on the following assumption.

Assumption 2. For all i = 1, · · · , n,

(a) (Ti, T−i) ⊥⊥ Yi (ti,mi) for all ti ∈ {0, 1} and mi ∈ M;

(b) (Ti, T−i) ⊥⊥Mi(ti, t−i) for all ti ∈ {0, 1} and t−i ∈ {0, 1}n−1;

(c) Mi ⊥⊥ Yi(ti,mi) | wi for all ti ∈ {0, 1} and mi ∈ M;

(d) Mi(t
′
i, t−i) ⊥⊥ Yi (ti,mi) | wi for all ti ∈ {0, 1}, t′i ∈ {0, 1}, t−i ∈ {0, 1}n−1 and mi ∈ M.

Assumption 2 is standard in the literature of mediation analysis (Pearl, 2001). Assumptions

2(a)-(b) assume no treatment-outcome confounding and no treatment-mediator confounding,

respectively. Assumptions 2(a)-(b) hold under experiments with randomized treatment.

Assumption 2(c) assumes that the variable wi captures all the confounding factors between

the mediator and the outcome. Assumption 2(d) assumes the cross-world independence

between the potential outcomes and potential mediators. However, Assumption 2(d) can never

5The SE(t) in (7) is one way to define spillover effects. Alternatively, spillover effects can be defined as
the change in unit i’s outcome resulting from differences between any two distinct intervention programs
through variations in the treatment of others.
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be validated, as it is impossible to observe both Mi(t
′
i, t−i) and Yi (ti,mi) in any experiment

if ti ̸= t′i.

Theorem 2.1 expresses the parameters of interest in terms of the observed data up to the

unknown distribution of wi.

Theorem 2.1. Under Assumption 2,

(1) ToE = E(Yi | Ti = 1)− E(Yi | Ti = 0);

(2) DE(t) = Ewi
{E [E (Yi |Mi, Ti = 1, wi)− E (Yi |Mi, Ti = 0, wi) | Ti = t, wi]};

(3) IE(t) = Ewi

{
E [E (Yi |Mi, Ti = t, wi) | Ti = 1, wi]

−E [E (Yi |Mi, Ti = t, wi) | Ti = 0, wi]

}
;

(4) SE(t) = Ewi

{
E [E (Yi |Mi, Ti = t, wi) | Ti = t, T−i = 1n−1, wi]

−E [E (Yi |Mi, Ti = t, wi) | Ti = t, T−i = 0n−1, wi]

}
.

If the parameter of interest is solely ToE, it can be identified, and consistent estimators

can be obtained by regressing the outcome on the treatment indicator with an intercept, or

equivalently, by using the difference-in-means estimator, provided the treatment is randomly

assigned. However, if the focus is on distinguishing between the direct and indirect effects,

or when the spillover effect is of interest, these causal effects are identified only up to the

unknown distribution of wi.

Following the classical Baron-Kenny method (Baron and Kenny, 1986), I assume that the

potential outcome is linear in the treatment and mediator, and additive with respect to any

form of wi, as stated in Assumption 3, which implies Assumptions 2(c)-(d). However, I relax

the assumption that the mediator Mi is a linear function of Ti and wi.

Assumption 3. Assume the following (partially) linear model for the potential outcome:

Yi(ti,mi) = β0 + β1ti + β2mi + λ(wi) + εi, (9)

where λ(·) is an unknown measurable function with E(λ(wi)) = 0. Additionally, assume that

{εi}ni=1 are i.i.d., E(ε2i ) <∞, and E(εi | Ti, T−i, A
post) = 0.

Under Assumption 3, the observed outcome also follows the linear model:

Yi = β0 + β1Ti + β2Mi + λ(wi) + εi.

Let ui denote the error term in the outcome model: ui = λ(wi) + εi.

Although the framework in Section 2 applies to general forms of mediators, Sections 3

and 4 focus on the estimation and inference with the mediator specified in (1). I follow
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the convention of 0/0 = 0. I focus on Mi in (1) for several reasons. First, different

forms of mediators exhibit varying levels of dependency and require different proofs. The

magnitude of Mi in (1) is normalized and remains bounded as networks become denser and

sample sizes increase, ensuring the outcome does not diverge to infinity under a constant

treatment effect. Second, with this fraction as the mediator, the linear outcome model

introduced in Assumption 3 becomes a special case of the linear-in-means model (Manski,

2013). Incorporating endogenous peer effects is also of interest and is left for future work.

Remark 2.4. Auerbach (2022a) investigates the identification and estimation of the following

partially linear model, with the parameters of interest being β and λ(wi):

Yi = β⊤Xi + λ(wi) + εi, (10)

where wi is some unobserved latent variable that also drives the network formation:

Aij = 1 {ηij ≤ g(wi, wj)} 1{j ̸= i}.

Auerbach (2022b) focuses on the dense network, where the sparsity parameter equals 1.

The regressor Xi in (10) corresponds to (1, Ti,Mi) in my setting. Auerbach (2022b) uses a

matching approach based on network data Aij to identify and estimate β and λ(wi). However,

this method relies on dense networks and sufficient variation in the regressors after controlling

for the latent variable. In my context, which involves exogenous shocks from the randomized

treatment and does not prioritize identifying the latent variable part λ(wi), I tackle the

endogeneity issue from the unobserved confounder using the IV method with SSIV.

Corollary 2.1 simplifies the statement of Theorem 2.1 under Assumption 3, and provides

the causal interpretation of the coefficients, which is analogous to the Baron-Kenny formulas

for mediation (Baron and Kenny, 1986).

Corollary 2.1. Under Assumption 3, then

(1) DE(1) = DE(0) = DE = β1;

(2) IE(1) = IE(0) = IE = β2 · {E(Mi | Ti = 1)− E(Mi | Ti = 0)};

(3) ToE = β1 + β2 · {E(Mi | Ti = 1)− E(Mi | Ti = 0)};

(4) SE(t) = β2 · {E(Mi | Ti = t, T−i = 1n−1)− E(Mi | Ti = t, T−i = 0n−1)}.

Under Assumption 3, where the treatment Ti does not interact with the mediator Mi,

DE(t) and IE(t) do not depend on the value of t. Furthermore, Corollary 2.1 shows that β1

captures the direct effect of the treatment, while the indirect and spillover effects depend on
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β2, scaled by the magnitude of changes in the mediator in response to changes in Ti and T−i.

When the post-intervention network Apost is uncorrelated with the treatment, the mediator

does not respond to changes in Ti, resulting in a zero indirect effect and making the total

effect equivalent to the direct effect. However, the spillover effect would still be present.

Additionally, with Mi in (1), E(Mi | Ti = t, T−i = 1n−1) − E(Mi | Ti = t, T−i = 0n−1) = 1,

indicating that β2 captures the spillover effect SE(t) defined in (7). Corollary 2.1 justifies the

emphasis on the estimation and inference of β1 and β2 in this paper.

To summarize, I account for two key features of networks when estimating β’s:

(1) There exists some latent variable wi that influences both network formation, and conse-

quently the mediator, as well as the outcome of interest.

(2) Treatment assignments affect how units are exposed to others in the network, with the

exposure mapping serving as a mediator for the treatment’s effect on the outcome.

As a result, even in a randomized setting, if the causal effects of interest involve the network,

such as the IE(t) in (6) and the SE(t) in (7), endogeneity becomes a concern, potentially

biasing the estimation of β2. Given the correlation between Ti and Mi, this bias in estimating

β2 can further affect the estimation of β1.

2.3 Motivating Examples

I present three empirical examples illustrating how social network structures can endogenously

evolve in response to interventions, potentially undermining their intended effects.

Example 2.1. Prina (2015) conducted an RCT to assess the impact of offering access to

formal savings on households’ financial situations in 19 villages in Nepal with 915 households.

Half of the female household heads were randomly offered the savings accounts, while the

other half were not. The financial links were measured by asking survey questions such

as “who did you exchange loans or gifts with?” The network experienced considerable

reshuffling, despite the total number of links remaining nearly constant (328 at baseline, 329

at endline). Of these, only 73 links persisted from baseline, while 255 links were broken after

the intervention, and 256 new links were formed by the endline. Importantly, the distribution

of treat-treat, control-control, and treat-control pairs among these link types was imbalanced.

Of the persisting links, 26 were treat-treat pairs, 17 were control-control pairs, and 30 were

treat-control pairs. Among the broken links, 68 were treat-treat, 74 were control-control, and

113 were treat-control. In contrast, among the newly formed links, 78 were treat–treat, 53

were control-control, and 125 were treat-control. I will revisit this study in Section 6 as an

empirical illustration.
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Example 2.2. Banerjee et al. (2023) investigated the effect of introducing formal financial

institutions on informal lending practices and social networks through studies in two distinct

settings. In their first study, they analyzed the non-random introduction of microfinance in

43 out of 75 villages in Karnataka, India. They found that social networks contracted more

in villages where microfinance was introduced. To validate these findings, they conducted an

RCT in Hyderabad, India, where 52 out of 104 neighborhoods were randomly selected for

microfinance introduction. Similar to the first setting, these neighborhoods also experienced a

reduction in social connections, even among households initially unlikely to borrow. Together,

these studies suggest that access to microfinance reduces the incentive to maintain and form

social links, affecting both borrowers and non-borrowers alike.

Example 2.3. Carrell et al. (2013) examined the impact of group randomization on academic

performance at the United States Air Force Academy, with the hypothesis that low-ability

students would benefit from exposure to high-ability peers. Incoming freshmen were randomly

assigned to treatment or control groups. The control group followed the usual distribution

of abilities, while the treatment group paired low-ability students with high-ability peers

and placed middle-ability students in separate squadrons. Contrary to expectations, the

intervention had a significantly negative effect on the academic performance of low-ability

students. While several factors could explain this outcome, the study found that the

endogenous sorting of roommates, study partners, and friends evolved differently in the

treatment group compared to the control group. Specifically, low-ability students in the

treatment group saw a notable increase in the number of low-ability study partners and

friends.

Examples 2.1-2.3 also highlight concerns about latent variables that influence network

formation. Example 2.1 demonstrates that transfers were linked to treatment households

having more assets and greater financial inclusion at baseline, suggesting that households

with more resources and higher socioeconomic status may also increase transfers to others.

Example 2.2 suggests that access to microfinance reduces borrowers’ incentives to maintain

connections, leading even non-participants to scale back efforts to form links. This is partly

because individuals connected to potential borrowers see diminished returns from these

relationships. Example 2.3 indicates that the increase in low-ability study partners and

friends was not merely due to the higher proportion of low-ability peers in the treatment

group but also reflected a pattern of homophily, as students gravitated toward others with

similar abilities.
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3 OLS estimation

In this section, I begin with discussing the properties of Mi and the conditions under which

endogeneity arises in Section 3.1. In Section 3.2, I discuss the bias resulting from the common

practice in empirical studies of collecting and using only pre-intervention network data. When

no endogeneity arises, I explore the asymptotic properties of OLS estimators in Section 3.3.

3.1 Property of Mi

Combined with the form of mediator in (1), the outcome model of interest is

Yi = β0 + β1Ti + β2

∑n
j=1A

post
ij Tj∑n

j=1A
post
ij

+ λ(wi) + εi.

In addition to assuming anonymous interference, this model assumes “no second- or higher-

order effects,” meaning the treatment of units beyond direct connections has no impact.

The properties of the estimator depend critically on the characteristics of Mi. The

regressor Mi is dependent across units, and its fractional form raises natural concerns about

whether it provides sufficient variation, potentially leading to (near) multicollinearity issues.

To better understand the properties of Mi, I decompose it as Mi = ξi+ r
∗
i , where ξi is defined

as the ratio of the conditional expectations of the numerator and denominator of Mi in (1):

ξi =
E(Apost

ij Tj | Ti, wi)

E(Apost
ij | Ti, wi)

(11)

and r∗i is some remainder term. Throughout the paper, I present the results based on the

following two cases, depending on whether ξi is degenerate or not:

(a) ξi is an i.i.d. variable across i with constant variance, implying Var(ξi) > 0;6

(b) ξi = π, implying Var(ξi) = 0.

Case (b) occurs when Apost
ij is mean independent of Tj given Ti and wi, i.e., E(Tj |

Apost
ij , Ti, wi) = E(Tj | Ti, wi) = π. This case encompasses scenarios where the network

remains unchanged after the intervention (i.e., Apre = Apost), undergoes exogenous changes

unrelated to the treatment, or when Apost
ij depends on Tj but is mean-independent. It has

two important implications for discussion. First, in Case (b), no endogeneity issue arises,

6The term ξi does not depend on n because the sparsity rate qpostn cancels out between the numerator and
denominator.

18



even with the presence of an unobserved confounder:

E [Miui] = E

[∑n
j=1A

post
ij Tj∑n

j=1A
post
ij

ui

]
= πE

[∑n
j=1A

post
ij∑n

j=1A
post
ij

ui

]
= 0.

The equality holds because Apost
ij is conditionally mean independent of Tj, and Assumption

1 implies that Apost
ik is independent of Tj for any k ≠ j. This property, resulting from the

row normalization of the mediator, is also documented by Dieye et al. (2014) and applied

in the construction of the normalized SSIV (Card, 2009; Autor et al., 2013; Peri et al.,

2015; Adão et al., 2019; Goldsmith-Pinkham et al., 2020; Borusyak et al., 2022). Second,

the consistency condition and convergence rate of OLS estimators depend on whether ξi is

degenerate. Treatment-induced network changes introduce greater variation in the fraction

mediator, potentially improving the convergence rate. By comparing the results of Cases (a)

and (b), I evaluate how the network’s response to the intervention influences inference.

3.2 Bias from OLS estimation with pre-intervention network

In empirical studies, researchers often assume the network remains unchanged and use

only pre-intervention data for estimation. Alternatively, even when acknowledging possible

network changes, they avoid post-intervention data due to endogeneity concerns and rely on

pre-intervention data to control for unobserved confounders (Carter et al., 2021). However,

using Apre instead of Apost in the regression model introduces omitted variable bias (OVB)

and impedes the identification and consistent estimation of direct, indirect, and spillover

effects.

Define Mpre
i as the mediator calculated using Apre, i.e., Mpre

i =
∑n

j=1A
pre
ij Tj/

∑n
j=1A

pre
ij .

Researchers typically estimate a linear regression with the following regressors:

Xpre
i = (1, Ti,M

pre
i ).

Let βpre denote the vector of population coefficients from the above OLS fit. By the argument

of OVB,

βpre
1 =β1 + β2 ·

Cov(Ti,Mi)

Var(Ti)
= ToE and βpre

2 = β2 ·
Cov(Mpre

i ,Mi)

Var(Mpre
i )

.

This implies that if the mediator Mi is uncorrelated with the treatment Ti, there is no OVB

in βpre
1 . However, when a correlation exists between Ti and Mi, β

pre
1 captures the total effect

of Ti on Yi, encompassing both the direct effect and the indirect effect through changes in

the mediator. The coefficient βpre
2 represents the attenuated indirect effect, which remains
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uncontaminated by β1. If researchers are only interested in the total effect ToE, fitting an

OLS regression with Xpre
i using the pre-intervention network can still yield the desired result.

However, this approach cannot distinguish between direct and indirect effect channels and

fails to recover the spillover effect.

3.3 Asymptotic properties of OLS estimators

As discussed in Section 3.1, no endogeneity arises when either Var (ξi) > 0 with λ(wi) = 0, or

Var (ξi) = 0. In such cases, I propose using OLS estimation with the regressor vector Xi to

estimate β:

Xi = (1, Ti,Mi).

Let β̂ols denote the vector of coefficients obtained from the above OLS fit.

Theorem 3.1. Under Assumptions 1 and 3,

(a) if Var (ξi) > 0 and λ(wi) = 0, then β̂ols − β = OP(n
−1/2);

(b) if Var (ξi) = 0, then β̂ols
0 − β0 = OP

(√
qpostn

)
, β̂ols

1 − β1 = OP(n
−1/2) and β̂ols

2 − β2 =

OP

(√
qpostn

)
.

Theorem 3.1 establishes the consistency conditions of β̂ols in the absence of endogeneity

under Cases (a) and (b), respectively. Under Case (a), the convergence rate is the standard
√
n and does not depend on the sparsity rate qpostn . The intuition is that, by the decomposition,

ξi represents the key term in Mi. When ξi is non-degenerate and thus i.i.d., the estimation

reduces to the standard case with i.i.d. data. Under Case (b), when ξi is degenerate, the

variation of Mi comes from the remainder term r∗i . As the network becomes denser, the

dependence among units increases, and the variation of Mi across units decreases, which

slows the convergence rate. This explains why β̂ols
0 and β̂ols

2 are consistent only when the

network is not dense (i.e., qpostn ≺ 1), with a (possibly) slower convergence rate than the usual

rate
√
n, scaled by

√
nqpostn . The convergence rate of β̂ols

1 remains the standard
√
n, since Ti

is uncorrelated with the other regressor Mi and thus unaffected by the dependency of Mi

across i, as in the i.i.d. setting.

Next, I study the asymptotic distribution of β̂ols, focusing on the regimes where it is

consistent. Define ûolsi as the residual from the above OLS fit and stack Xi to form the n× 3

design matrix X. The variance estimator V̂ ols is the standard heteroskedasticity-consistent

(HC) variance estimator, defined as:

V̂ ols = (X⊤X)−1V̂ ols
num(X

⊤X)−1, (12)
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where the middle term, V̂ ols
num, is given by

V̂ ols
num = X⊤diag

{
(ûolsi )2, i = 1, . . . , n

}
X.

Theorem 3.2 focuses on the regimes of qpostn under which the OLS estimators are consistent.

Theorem 3.2. Suppose either Var (ξi) > 0 with λ(wi) = 0 or Var (ξi) = 0 with qpostn ≺ 1.

Under Assumptions 1 and 3, then(
V̂ ols

)−1/2 (
β̂ols − β

)
d→ N (0, I3).

Theorem 3.2 establishes the asymptotic normality of β̂ols and shows that V̂ ols closely

approximates the asymptotic variance. There are two key implications. First, despite the

dependence of the regressor Mi across units, the usual HC variance estimator V̂ ols in (12)

remains valid since the error term ui is assumed to be i.i.d. Second, the normal approximation

exhibits a self-normalization property, ensuring that inference based on standard t-tests

is reliable. Although the convergence rate of β̂ols (potentially) depends on the sparsity

parameter qpostn , its asymptotic normality is unaffected by the sparsity level, as the varying

order of β̂ols is “canceled out” by the order of the variance component. This result is crucial

because the sparsity parameter qpostn is generally not identified (Bickel et al., 2011). A similar

self-normalization property is observed by Cai (2022) in the context of network centrality

regression and by Hansen and Lee (2019) in the context of cluster-dependent data.

4 IV estimation

In this section, I examine the IV estimation to address the potential endogeneity issue when

λ(wi) ̸= 0. I study the asymptotic properties of IV estimators using SSIV in Section 4.1,

showing that they become inconsistent as networks grow denser. To address this, in Section

4.2, I propose a modification to SSIV to restore consistency in denser networks.

4.1 Asymptotic properties of SSIV estimators

Endogeneity issue (potentially) arises when λ(wi) ̸= 0. To address this, one needs instruments

that are uncorrelated with ui and shifts Mi enough to identify β2. I tackle this issue using

the shift-share instrumental variable approach. Borusyak and Hull (2023) proposed a general

approach for constructing SSIVs by combining exogenous shocks with non-exogenous exposure

through a known formula, adjusting for expected treatment. Applying this approach to my
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setting, I derive the following linear SSIV for Mi:

Zssiv
i =

n∑
j=1

Apre
ij (Tj − π),

which leverages the treatment assignment of others, Tj, as the exogenous shock, weighted by

pre-intervention network information as the share.

To estimate β, I propose using IV estimation with the IV vector Zi:

Zi =

(
1, Ti,

n∑
j=1

Apre
ij (Tj − π)

)
.

Stack Zi to obtain the n× 3 matrix Z. Let β̂iv denote the vector of the coefficients obtained

from the IV fits with Zi.

I assess the validity of SSIV, and thus the identification of β, by verifying two conditions:

exogeneity and relevance. The exogeneity of SSIV holds by construction, due to the random

assignment of treatments and the centering of treatment around the assignment probability:

E[Zssiv
i ui] = E

[(
n∑

j=1

Apre
ij (Tj − π)

)
ui

]
=

n∑
j=1

E
(
Apre

ij ui
)
E(Tj − π) = 0.

The question now turns to the relevance of the SSIV. Borusyak and Hull (2023, Assumption

3) assume weak mutual dependence of the SSIV to ensure the convergence of the sample first

stage, which, in my model, roughly implies that the network is not too dense. I thoroughly

analyze the relevance condition in my context and characterize the sparsity regimes under

which the SSIV provides consistent estimators, as stated in Theorem 4.1. In line with

Borusyak and Hull (2023), I demonstrate that consistency is achieved when both pre- and

post-treatment networks are relatively sparse.

Theorem 4.1. Under Assumptions 1 and 3,

(a) if Var (ξi) > 0 with max{qpren , qpostn } ≺ n−1/2, then

β̂iv − β = OP
(√

nmax{qpren , qpostn }
)
;

(b) if Var (ξi) = 0 with max{qpren , qpostn } ≺
√
nqpostn , then

β̂iv
1 − β1 = OP

(
1√
n
max

{
max{qpren , qpostn }√

qpostn

, 1

})
.
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Moreover, with max{qpren , qpostn } ≺ n−1/2, then

β̂iv
0 − β0 = OP

(√
nmax{qpren , qpostn }

)
and β̂iv

2 − β2 = OP
(√

nmax{qpren , qpostn }
)
.

Theorem 4.1 specifies the regimes under which β̂iv is consistent for Cases (a) and (b). The

consistency regime and convergence rates of β̂iv
0 and β̂iv

2 are invariant across these cases, both

depending on qpren and qpostn , and are (possibly) slower than the usual rate
√
n, scaled by the

degree in the denser network, nmax{qpren , qpostn }. In Case (b), β̂iv
1 converges at a (possibly)

faster rate compared to Case (a) and is consistent under a less restrictive condition. This

observation aligns with Theorem 3.1, which shows that, in Case (b), the estimation of β1 is

less affected by the dependency of Mi across i and exhibits a faster convergence rate than

the estimator of β2.

Theorem 4.1 demonstrates that the consistency of the SSIV estimators breaks down when

networks are relatively dense, i.e., max{qpren , qpostn } ≽ n−1/2. Here is the intuition: the SSIV

method leverages variation in the number of treated friends for each individual, driven by

random fluctuations in treatment assignment. Incorporating network information is essential,

as the endogenous variable Mi depends on the network structure. However, as the network

becomes denser, the variation in the number of treated friends across individuals decreases.

Consider an extreme case where all individuals are fully connected before the intervention.

In this scenario, the SSIV reduces to Zssiv
i =

∑
j ̸=i(Tj − π), where the only distinction across

units is whether they are treated or not.

Remark 4.1. A commonly used instrument in the peer effects literature is the “peer-of-peer”

IV (Bramoullé et al., 2009; De Giorgi et al., 2020). When peers of peers are not direct

peers, their characteristics influence individual outcomes only through their effect on peers’

outcomes, providing valid instruments. Identification also requires a non-overlapping peer

network, consistent with the findings on SSIV: the network must not be too dense and should

exhibit sufficient structural variation.

Remark 4.2. In Appendix E, I discuss the performance of the IV estimators using the

normalized SSIV suggested in Borusyak et al. (2022):
∑n

j=1A
pre
ij Tj/

∑n
j=1A

pre
ij . Instead of

centering the treatment around the assignment probability, this approach normalizes the total

number of treated friends to guarantee the exogeneity. However, as the network becomes

denser, this ratio converges to the assignment probability as the sample size increases. This

convergence can lead to a weak IV problem if the assignment probability is constant. See the

consistency condition of the IV estimators using this normalized SSIV in Theorem E.1.

Remark 4.3. The BLP instrument is widely used in empirical industrial organization to

address endogeneity in demand estimation by leveraging the characteristics of competing
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products as instruments (Berry et al., 1995; Armstrong, 2016). Both the BLP instrument and

the shift-share instrument share the fundamental idea of leveraging variation from external,

exogenous sources to identify causal effects. However, both the BLP instrument and the

normalized SSIV face challenges in maintaining identifying power in limiting cases. The BLP

instrument has limited identifying power asymptotically in large markets, as market shares

approach zero and the dependence of equilibrium markups on other products’ characteristics

diminishes. Similarly, the normalized SSIV,
∑n

j=1A
pre
ij Tj/

∑n
j=1A

pre
ij , becomes degenerate in

denser networks, weakening its relevance.

Corollary 4.1 simplifies the results in Theorem 4.1 to the special case where qpren ≼ qpostn .

Corollary 4.1. Suppose qpren ≼ qpostn . Under Assumptions 1 and 3,

(a) if Var (ξi) > 0 with qpostn ≺ n−1/2, then β̂iv − β = OP(
√
nqpostn );

(b) if Var (ξi) = 0 it holds that β̂iv
1 − β1 = OP

(
1√
n

)
. Moreover, with qpostn ≺ n−1/2, then

β̂iv
0 − β0 = OP (

√
nqpostn ) and β̂iv

2 − β2 = OP (
√
nqpostn ).

Corollary 4.1 shows that in both Cases (a) and (b), β̂iv
0 and β̂iv

2 exhibit the same convergence

rate, which depends on qpostn and is (possibly) slower than the usual rate
√
n. In Case (a),

the convergence rate of β̂iv
1 matches that of β̂iv

0 and β̂iv
2 . However, in Case (b), where Apost is

conditionally mean-independent of the treatment, β̂iv
1 is less affected by the dependence of

Mi across individuals and retains the usual rate
√
n.

Now I show the asymptotic normality of the IV estimators β̂iv. I focus on the regimes

where the IV estimators are consistent. Define V iv
num = Var (

∑n
i=1 Ziui), the variance of the

numerator of the centered estimator β̂iv − β. It can be shown that

V iv
num =



∑n
i=1E(u

2
i ) π

∑n
i=1E(u

2
i ) 0

π
∑n

i=1E(u
2
i ) π

∑n
i=1E(u

2
i ) π(1− π)

n∑
i=1

n∑
j=1

E
(
Apre

ij uiuj
)

0 π(1− π)
n∑

i=1

n∑
j=1

E
(
Apre

ij uiuj
)

π(1− π)
n∑

i=1

E

( n∑
j=1

Apre
ij uj

)2


 .

(13)

The (2, 3), (3, 2) and (3, 3) elements of V iv
num in (13) account for the dependence of Zssiv

i across

i, even though ui is i.i.d.. Let û
iv
i denote the residual from the IV fits with Zi. Define V̂

iv
num
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as the plug-in estimator of V iv
num:

V̂ iv
num =



n∑
i=1

(ûivi )
2 π

n∑
i=1

(ûivi )
2 0

π
n∑

i=1

(ûivi )
2 π

n∑
i=1

(ûivi )
2 π(1− π)

n∑
i=1

n∑
j=1

Apre
ij û

iv
j û

iv
j

0 π(1− π)
n∑

i=1

n∑
j=1

Apre
ij û

iv
i û

iv
j π(1− π)

n∑
i=1

(
n∑

j=1

Apre
ij û

iv
j

)2


. (14)

Define V̂ iv = (Z⊤X)−1V̂ iv
num(X

⊤Z)−1 as the estimator of the asymptotic variance of β̂iv. I

demonstrate the asymptotic normality of β̂iv, specifically focusing on the regimes where the

IV estimators are consistent.

Theorem 4.2. Under Assumptions 1 and 3, and with max{qpren , qpostn } ≺ n−1/2, then(
V̂ iv
)−1/2 (

β̂iv − β
)

d→ N (0, I3).

Theorem 4.2 establishes the asymptotic normality of the IV estimators β̂iv using SSIV,

along with a consistent variance estimator, thereby validating inference results based on the

usual t-test. Similar to Theorem 3.2, it exhibits the property of self-normalization, which

does not require to know the sparsity parameters.

Remark 4.4. The usual HC variance estimator of IV estimators is given by V̂ iv,hc =

(Z⊤X)−1V̂ iv,hc
num (X⊤Z)−1 where

V̂ iv,hc
num =



n∑
i=1

(ûivi )
2

n∑
i=1

Ti(û
iv
i )

2
n∑

i=1

(ûivi )
2

n∑
j=1

Apre
ij (Tj − π)

n∑
i=1

Ti(û
iv
i )

2
n∑

i=1

Ti(û
iv
i )

2
n∑

i=1

Ti(û
iv
i )

2
n∑

j=1

Apre
ij (Tj − π)

n∑
i=1

(ûivi )
2

n∑
j=1

Apre
ij (Tj − π)

n∑
i=1

Ti(û
iv
i )

2
n∑

j=1

Apre
ij (Tj − π)

n∑
i=1

(ûivi )
2

(
n∑

j=1

Apre
ij (Tj − π)

)2


.

After appropriately scaling the (3, 1), (1, 3), (3, 2), and (2, 3) elements of V̂ iv,hc
num , these terms

converge to zero. Thus, the primary differences between V̂ iv,hc
num and V̂ iv

num lie in the (2, 3),

(3, 2), and (3, 3) terms. The variance estimator V̂ iv,hc
num , designed for i.i.d. data, does not

account for dependencies across units induced by the SSIV Zssiv
i . In contrast, V̂ iv

num captures

these dependencies, leading to more accurate variance estimation. This issue is similar to

that documented by Adão et al. (2019), who study inference in shift-share regression designs,

where regional outcomes are regressed on a weighted average of sectoral shocks using regional

sector shares as weights. They show that over-rejection arises when using cluster-robust
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standard errors because regression residuals are correlated across regions with similar sectoral

shares, regardless of their geographic location.

4.2 Modification of SSIV

I begin this subsection with a more formal explanation of the failure of relevance, offering

insights into how to modify the SSIV. To simplify the argument, consider the special case

where qpren = qpostn = qn. The relevance of SSIV is measured by n−1
∑n

i=1MiZ
ssiv
i .7 Recall the

decomposition that Mi = ξi + r∗i , where ξi is defined in (11) and r∗i is the remainder term,

capturing information from all other units j ̸= i. The relevance of SSIV is then given by:

1

n

n∑
i=1

MiZ
ssiv
i =

1

n

n∑
i=1

ξiZ
ssiv
i +

1

n

n∑
i=1

r∗iZ
ssiv
i .

By definition, ξi is a function of Ti and wi and is uncorrelated with the treatments Tj

of all other units j ̸= i, and thus uncorrelated with Zssiv
i . Consequently, the first term,

n−1
∑n

i=1 ξiZ
ssiv
i , has mean zero but a variance of order O(nq2n), referred to as the noise term.

The variance increases with the sparsity parameter as the dependence of Zi across units

strengthens in denser networks. Thus, this term does not contribute to the signal in the

relevance measure but instead adds noise. In contrast, the second term, n−1
∑n

i=1 r
∗
iZ

ssiv
i ,

where r∗i contains information from all other units j, contributes to the signal in the relevance

measure and is referred to as the signal term. It has a non-zero mean and remains of constant

scale. In other words, in n−1
∑n

i=1MiZ
ssiv
i , the first term contributes only noise, while the

second term carries the signal for the relevance measure. As networks become denser, the

noise term increasingly dominates the signal term, preventing the first stage from converging

to a nonzero constant and resulting in an inconsistent estimator. Therefore, restoring the

consistency of the IV estimators is feasible if the noise term can be effectively reduced while

preserving the signal term.

Remark 4.5. There is a remarkable connection between SSIV and the estimator of the

indirect effect in Li and Wager (2022), who study asymptotics for treatment effect estimation

under network interference, with the network randomly drawn from a graphon. They

consider anonymous interference, where potential outcomes depend on the fraction of treated

friends, not their identities. Unlike my setting, they assume that the network remains

unchanged following the intervention. The potential outcome for individual i is Yi(ti, t−i) =

fi

(
ti,
∑n

j=1Aijtj/
∑n

j=1Aij

)
, where fi ∈ F allows arbitrary dependence on the latent variable

7For the sake of a heuristic argument, I focus on 1
n

∑n
i=1MiZ

ssiv
i instead of the sample covariance

1
n

∑n
i=1MiZ

ssiv
i − 1

n

∑n
i=1Mi

1
n

∑n
i=1 Z

ssiv
i . Since the SSIV Zssiv

i is mean zero, this simplification does not
change the essence of the argument.
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wi. They propose an estimator for the indirect effect defined in (8),

τ̂UIND =
1

n

n∑
i=1

Yi

(∑
j ̸=iAijTj

π
−
∑

j ̸=iAij(1− Tj)

1− π

)
,

which is derived as the difference between the Horvitz–Thompson estimators for direct and

total effects, and thus is unbiased. Rewriting this estimator gives

τ̂UIND =
1

π(1− π)

1

n

n∑
i=1

Yi

(∑
j ̸=i

Aij(Tj − π)

)
,

which implicitly uses SSIV to address endogeneity.

Here, I explain how to reduce the noise term, drawing inspiration from the PC balancing

idea in Li and Wager (2022). Ideally, the term 1
n

∑n
i=1 ξiZ

ssiv
i could be eliminated by adjusting

the SSIV to be the residual from the projection of Zssiv
i onto ξi, leveraging the orthogonality

property. However, since ξi is unknown, the noise term 1
n

∑n
i=1 ξiZi can instead be reduced

by projecting wi out of Zi, thereby decreasing the noise while preserving the relevance signal

from other units j. Although wi is unobserved, its information can be extracted through

spectral analysis of the graphon.

To be more specific, let Gpre
n denote the graphon matrix, where the (i, j) element is given

by Gpre
n,ij = gpre(wi, wj). By performing eigenvalue decomposition of qpren Gpre

n , I express it

as qpren Gpre
n =

∑n
k=1 λ

∗
kψ

∗
kψ

∗⊤
k , where λ∗k represents the k-th largest eigenvalue of qpren Gpre

n . I

assume that the graphon is approximately low-rank, as formalized in Assumption 4, meaning

it can be well-approximated by the leading r terms: qpren G̃pre
n =

∑r
k=1 λ

∗
kψ

∗
kψ

∗⊤
k . I project Zi

onto the first r eigenvectors, {ψ∗
k(wi)}rk=1, with the coefficients:

γ∗k =
n∑

i=1

ψ∗
k(wi)Z

ssiv
i , for all k = 1, · · · , r,

which follows from the orthogonality of eigenvectors. The residual from this projection yields

the “oracle version” of the modified SSIV: Zde∗
i = Zssiv

i −
∑r

k=1 γ
∗
kψ

∗
k(wi). For a feasible

estimatior, I approximate ψ∗
k(wi) using the eigenvector of pre-intervention adjacency matrix,

Apre =
∑n

k=1 λ̂kψ̂kψ̂
⊤
k . Therefore, the modified SSIV, denoted as Zde

i (for “denoised”), is

given by:

Zde
i = Zssiv

i −
r∑

k=1

γ̂kψ̂k(wi)

where γ̂k =
∑n

i=1 ψ̂k(wi)Z
ssiv
i . By the properties of projection, the modified SSIV Zde

i is

orthogonal to the space spanned by {ψ̂k(wi)}rk=1, which encodes information about wi. This
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effectively reduces noise without compromising the signal.

In the network literature, particularly in settings involving inference with eigenvectors

(Cai, 2022; Le and Li, 2022; Li and Wager, 2022), it is widely assumed that the graphon is

low-rank in terms of its eigenfunctions, such that

g(wi, wj) =
r∑

k=1

λkψk(wi)ψk(wj) (15)

where E [ψ2
k(wi)] = 1 and E [ψk(wi)ψl(wi)] = 0 for k ̸= l. This assumption is satisfied by

many well-known network models, including the stochastic block model (Holland et al., 1983)

and the random dot product graph (Young and Scheinerman, 2007; Athreya et al., 2017).

Another popular model is the latent space model (Hoff et al., 2002), which falls within the

class of inhomogeneous Erdős–Rényi models, including the homophily model and the beta

model. The latent space model and the more general graphon models typically do not impose

a low-rank structure as in (15), but instead rely on certain smoothness conditions for the

graphon function. This paper assumes that the graphon gpre can be well-approximated by a

low-rank representation based on its eigenvalues, as outlined in Assumption 4.

Assumption 4. There exists some constant r (r ≺ n) such that

(a) min
k∈{1,··· ,r−1}

(λk − λk+1) ≍ nqpren ;

(b)
∥∥∑n

k=r+1 λ
∗
kψ

∗
kψ

∗⊤
k

∥∥
op

= OP(q
pre
n ).

Assumption 4(a) requires the minimum eigen-gap, i.e., the spacing between an eigenvalue

and the rest of the spectrum, to be sufficiently large. Several papers propose eigenvector

estimators that are robust to small eigen-gaps. For example, Cheng et al. (2021) tackle

eigenvector estimation for low-rank matrices with small eigen-gaps and noisy observations,

and Li et al. (2022) focus on estimating linear functionals of unknown eigenvectors under

similarly tight eigen-gap conditions. While these robust estimators could potentially extend

my methods to such settings, doing so is beyond the scope of this paper. Assumption 4(b) is

analogous to the sparsity assumption in high-dimensional analysis, which assumes that only a

small subset of features (variables) significantly contribute to the outcome. This assumption

enables more efficient estimation and prediction in models with a large number of features,

possibly exceeding the number of observations (Tibshirani, 1996).

To estimate β’s, I propose the IV fits with the modified IV vector Z̃de
i :

Z̃de
i = (1, Ti, Z

de
i ) .
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Stack Z̃de
i to form the n×3 matrix Z̃de. Let β̂de denote the vector of the coefficients obtained

from the above IV fit.

Theorem 4.3. Suppose qpren ≻ log(n)
log(log(n))

/n. Under Assumptions 1, 3 and 4,

(a) if Var (ξi) > 0 with max{qpren , qpostn } ≺
√
qpren , then

β̂de − β = OP

(
max{qpren , qpostn }√

qpren

)
;

(b) if Var (ξi) = 0, it holds that β̂de
1 − β1 = OP

(
1√
n

)
. Moreover, with max{qpren , qpostn } ≺√

qpren , then

β̂de
0 − β0 = OP

(
max{qpren , qpostn }√

qpren

)
and β̂de

2 − β2 = OP

(
max{qpren , qpostn }√

qpren

)
.

To make the modified SSIV work, it requires precise estimation of the eigenvectors, which

becomes problematic when the network is too sparse (Alt et al., 2021; Benaych-Georges et al.,

2019, 2020). Despite this added requirement, log(n)
log(log(n))

/n is much sparser than the threshold

at which SSIV fails, n−1/2. As a result, the consistency regime of the modified SSIV overlaps

with that of SSIV, while also extending to the regime where SSIV becomes inconsistent.

Remark 4.6. To clarify the condition max{qpren , qpostn } ≺
√
qpren , I discuss it in two cases:

(1) if qpren ≺ qpostn , then max{qpren , qpostn } ≺
√
qpren holds under

√
qpren ≻ qpostn , saying that the

pre-intervention network can not be too sparse compared with the post-intervention

network;

(2) if qpren ≽ qpostn , then max{qpren , qpostn } ≺
√
qpren holds under qpren ≺ 1.

The modified SSIV cannot be extended to the case where both pre- and post-intervention

networks are dense. In such a case, one potential solution is to use the matching method

from Auerbach (2022b) if some regularity assumption holds, e.g., Mi has sufficient variation

when controlling for wi.

Corollary 4.2 simplifies the results in Theorem 4.3 under the special case qpostn ≽ qpren .

Corollary 4.2. Suppose qpostn ≽ qpren ≻ log(n)
log(log(n))

/n. Under Assumptions 1, 3 and 4, then

(a) if Var (ξi) > 0 with
√
qpren ≻ qpostn , then β̂de − β = OP

(
qpostn√
qpren

)
;
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(b) if Var (ξi) = 0, it holds that β̂de
1 − β1 = OP

(
1√
n

)
. Moreover, with

√
qpren ≻ qpostn , then

β̂de
0 − β0 = OP

(
qpostn√
qpren

)
and β̂de

2 − β2 = OP

(
qpostn√
qpren

)
.

Aligning with Corollary 4.1, Corollary 4.2 demonstrates that under Case (a), the conver-

gence rate of β̂ depends on the sparse parameters and is (possibly) slower than the usual rate
√
n, but faster than the IV estimators using SSIV, which converge at the rate 1/(

√
nqpostn ).

In Case (b), I also find that when the post-intervention network Apost is conditionally mean

independent of the treatment, β̂de
1 is less affected by the dependency of Mi across i and

retains the usual rate
√
n. Meanwhile, the convergence rates of β̂de

0 and β̂de
2 are (possibly)

slower than
√
n.

Remark 4.7. One takeaway from this subsection is that the discussion on the relevance

condition of SSIV sheds light on other forms of mediators. Specifically, if a mediator can be

decomposed into two parts,Mi = ξi+r
∗
i , where ξi contains only unit i’s own information, then

ξi introduces noise that potentially weakens relevance. The proposed denoising procedure

has the potential to restore consistency.

Now I show the asymptotic normality of β̂de. Define µu
k =

∑n
i=1 uiψ

∗
k(wi) and ηui =

ui −
∑r

k=1 µ
u
kψ

∗
k(wi). Define V

de
num = Var

(∑n
i=1 Z̃

de
i ui

)
, the variance of the numerator of the

estimation bias (β̂de − β). We can show

V de
num =


n∑

i=1

E(u2i )
n∑

i=1

πE(u2i ) 0

n∑
i=1

πE(u2i )
n∑

i=1

πE(u2i ) 0

0 0 π(1− π)
n∑

i=1

n∑
j=1

E
(
Apre

ij (ηui )
2
)

 . (16)

By comparing V iv
num in (13) with V de

num in (16), I observe that the (3, 2) and (2, 3) terms in (16)

are zero, whereas they are non-zero in (13). Additionally, the (3, 3) term in (13) accounts

for the covariance component, while the (3, 3) term in (16) accounts only for the diagonal

component. This modification effectively reduces noise by mitigating the dependency of the

IV across units due to information from wi.

Let ûdei denote the residual from the IV fits with Z̃de
i . Define µ̂u

k =
∑n

i=1 û
de
i ψ̂ki and
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η̂ui = ûdei −
∑r

k=1 µ̂
u
kψ̂ki. Define the plug-in estimator of V de

num as

V̂ de
num =


n∑

i=1

(ûdei )2 π
n∑

i=1

(ûdei )2 0

π
n∑

i=1

(ûdei )2 π
n∑

i=1

(ûdei )2 0

0 0 π(1− π)
n∑

i=1

n∑
j=1

Apre
ij (η̂ui )

2

 .

Define V̂ de = ((Z̃de)⊤X)−1V̂ de
num(X

⊤Z̃de)−1 as the variance estimator of β̂de.

Theorem 4.4 focuses on the sparsity regimes under which the IV estimators β̂de are

consistent.

Theorem 4.4. Suppose qpren ≻ log(n)
log(log(n))

/n. Under Assumptions 1, 3 and 4, and with

max{qpren , qpostn } ≺
√
qpren , then

(
V̂ de

)−1/2 (
β̂de − β

)
d→ N (0, I3).

Theorem 4.4 demonstrates the asymptotic normality of the IV estimators β̂de using the

modified SSIV, and the consistency of the variance estimator, which together validates the

inference results based on the usual t test. While comparing the asymptotic variances of β̂iv

and β̂de is not straightforward, simulation results in Section 5.2 indicate that, in the regimes

where both SSIV and modified SSIV yield consistent estimators, using the modified SSIV

does not increase the variance.

5 Monte Carlo Simulation

In this section, I provide simulation evidence to support my theory. I draw treatment indicator

Ti
i.i.d.∼ Bern(0.5). I consider the following four designs for network generation:

Design 1: Rank-3 Stochastic Block Model

• gpre(wi, wj) =



3/5 if Φ(wi) ≤ 1
3
and Φ(wj) ≤ 1

3
;

1/3 if 1
3
< Φ(wi) ≤ 2

3
and 1

3
< Φ(wj) ≤ 2

3
;

1/2 if 2
3
< Φ(wi) ≤ 1 and 2

3
< Φ(wj) ≤ 1;

1/5 otherwise.
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• gpost(wi, wj, Ti, Tj) =



3/5 if Φ(wi(1− Ti)) ≤ 1
3
and Φ(wj(1− Tj)) ≤ 1

3
;

1/3 if 1
3
< Φ(wi(1− Ti)) ≤ 2

3
and 1

3
< Φ(wj(1− Tj)) ≤ 2

3
;

1/2 if 2
3
< Φ(wi(1− Ti)) ≤ 1 and 2

3
< Φ(wj(1− Tj)) ≤ 1;

1/5 otherwise.

Design 2: Homophily Model

• gpre(wi, wj) = 1− (Φ(wi)− Φ(wj))
2.

• gpost(wi, wj, Tj, Tj) = 1− (Φ(wi)(1− Ti)− Φ(wj)(1− Tj))
2.

Design 3: Beta Model

• gpre(wi, wj) =
exp(Φ(wi)+Φ(wj))

1+exp(Φ(wi)+Φ(wj))
.

• gpost(wi, wj, Tj, Tj) =
exp(Φ(wi)+Φ(wj)+Ti+Tj+TiTj)

1+exp(Φ(wi)+Φ(wj)+Ti+Tj+TiTj)
.

Design 4: Homophily Model

• gpre(wi, wj) = 1− (Φ(wi)− Φ(wj))
2.

• gpost(wi, wj, Ti, Tj) = 1− (Φ(wi(1− Ti))− Φ(wj(1− Tj)))
2.

For all four models, I set the diagonal elements of pre- and post-intervention networks to

zero, i.e., gpre(wi, wi) = 0 and gpost(wi, wi, Ti, Ti) = 0. The ranks r for these four designs are

3, 2, 2 and 2, respectively.

I explore the sparsity regime where qpren = qpostn = qn, considering different levels of sparsity.

The adjacency matrices for the pre- and post-intervention networks are generated as follows:

Apre
ij = 1 {ηij ≤ qng

pre(wi, wj)} ,

Apost
ij = 1

{
ηij ≤ qng

post(wi, wj, Ti, Tj)
}
,

where wi
i.i.d.∼ N (0, 1) and ηij

i.i.d.∼ U [0, 1] for i < j and ηij = ηji. Each simulated dataset has

n ∈ {200, 800} with 5, 000 replications.

Table 1 reports the within-sample mean and standard error of the mediatorMi for varying

levels of sparsity and sample sizes over four designs. The results for qn = n−1 show that

Designs 1–4 maintain stable standard errors as the sample size increases. For qn = n−1/2, the

standard errors for Designs 1–4 decrease with sample size, with Designs 3 and 4 shrinking

at a faster rate. Finally, for qn = 1, Designs 1 and 2 maintain stable standard errors as the

sample size grows, while Designs 3 and 4 exhibit a reduction in standard errors by half when
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the sample size increases from 200 to 800. Moreover, for Designs 3 and 4, when the network

is denser, the standard errors of Mi decrease, suggesting insufficient variation within the

sample and a potential issue of near collinearity when fitting linear regression. Consequently,

I use Designs 1 and 2 to represent Case (a) with non-degenerate ξi, and Designs 3 and 4 to

represent Case (a) with constant ξi. Notably, both Designs 2 and 4 are homophily models,

but how treatments enter the network model differs, consequently influencing the properties

of Mi and the performance of the estimators.

Table 1: Mi in different designs

Design statistics qn
n = 200 n = 800

−1 −1/2 1 −1 −1/2 1
1 mean 0.173 0.533 0.534 0.174 0.536 0.535

std 0.367 0.272 0.142 0.369 0.208 0.137
2 mean 0.282 0.507 0.507 0.284 0.508 0.508

std 0.420 0.199 0.134 0.422 0.170 0.135
3 mean 0.282 0.521 0.522 0.282 0.521 0.522

std 0.419 0.155 0.020 0.421 0.108 0.012
4 mean 0.312 0.523 0.523 0.313 0.523 0.523

std 0.425 0.141 0.012 0.427 0.099 0.006

Note: Within-sample mean and standard deviation of Mi across four designs with n ∈ {200, 800},
qn ∈ {n−1, n−1/2, 1}, and 5,000 replications.

Section 5.1 presents the OLS estimation results without unobserved confounders, while

Section 5.2 presents the IV estimation results accounting for unobserved confounders. I omit

the results of β0 for brevity.

5.1 OLS estimation

I generate the outcomes as follows:

Yi = β0 + β1Ti + β2

∑n
j=1A

post
ij Tj∑n

j=1A
post
ij

+ εi

with (β0, β1, β2) = (1, 1, 0.5), εi
i.i.d.∼ U [−1, 1] and εi ⊥⊥ wi. Thus, there is no endogeneity

issue.

Table 2 presents the results for qn = n−1/2. The results for qn = n−2/3 (sparser networks)

and qn = n−1/3 (denser networks) follow similar patterns and are therefore omitted. The

top panel of Table 2 reports the results for n = 200, while the bottom panel shows the

results for n = 800. I report the mean and the standard deviation of the OLS estimators

across simulation draws under “β̂ols” and “std(β̂ols)”, using Apost and Apre to construct

33



Table 2: Simulation results of OLS estimation with qpren = qpostn = n−1/2

Design β OLS with Apost OLS with Apre

β̂ols std(β̂ols) s.e. coverage β̂ols std(β̂ols) coverage
n = 200

1 β1 = 1 1.000 0.088 0.087 0.941 1.097 0.085 0.789
β2 = 0.5 0.500 0.161 0.159 0.940 0.326 0.167 0.819

2 β1 = 1 1.000 0.092 0.091 0.946 1.093 0.083 0.796
β2 = 0.5 0.502 0.232 0.228 0.945 0.409 0.275 0.937

3 β1 = 1 1.001 0.084 0.082 0.941 0.991 0.084 0.945
β2 = 0.5 0.506 0.285 0.278 0.936 0.412 0.255 0.935

4 β1 = 1 0.999 0.082 0.082 0.943 0.998 0.083 0.948
β2 = 0.5 0.500 0.292 0.288 0.940 0.435 0.277 0.943

n = 800
1 β1 = 1 0.999 0.047 0.046 0.945 1.095 0.042 0.360

β2 = 0.5 0.502 0.112 0.111 0.950 0.355 0.123 0.785
2 β1 = 1 1.000 0.049 0.049 0.950 1.092 0.042 0.396

β2 = 0.5 0.500 0.146 0.143 0.945 0.415 0.198 0.929
3 β1 = 1 1.000 0.083 0.082 0.942 0.990 0.083 0.946

β2 = 0.5 0.496 0.481 0.466 0.936 0.406 0.431 0.944
4 β1 = 1 1.000 0.040 0.041 0.951 0.999 0.041 0.951

β2 = 0.5 0.500 0.207 0.206 0.948 0.441 0.198 0.942

Note: Simulation results for the OLS estimators using Apost and Apre with n ∈ {200, 800}, q = n−1/2,
and 5, 000 replications.

the fraction of treated friends, respectively, in order to approximate the true value and

asymptotic standard deviation of the estimators. For the OLS fits using Apost, I also report

the heteroskedastic consistent standard errors under “s.e.”, and the corresponding coverage

of 95% Confidence Intervals (CIs) under “coverage.” For the OLS fits using Apre, I report the

coverage of 95% CIs based on the corresponding heteroskedastic consistent standard error

under “coverage.”

In line with Theorem 3.1, the estimators β̂ols are consistent, with estimators for all four

designs concentrated around the true values. As the sample size increases from 200 to 800,

the standard deviations of β̂ols
1 across all models decrease by approximately half, consistent

with the expected
√
n convergence rate. For β̂ols

2 , the standard deviations in Designs 1 and 2

also decrease by half, whereas those in Designs 3 and 4 exhibit a slower convergence rate due

to smaller variation in Mi within the sample. In line with Theorem 3.2, the coverage of the

95% CIs using the heteroskedasticity-consistent standard errors is close to the target level.

However, if I mistakenly use Apre to calculate the mediator variable Mi, the coefficients

may be inaccurate, and the coverage can become arbitrarily poor. It is worth noting that,

for Designs 3 and 4, where the post-intervention networks have a weaker dependency on the

treatment, the estimators are not as far off, and the coverage of the CIs is better than in

Designs 1 and 2.
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5.2 IV estimation with SSIV

I generate the outcome as follows:

Yi = β0 + β1Ti + β2

∑n
j=1A

post
ij Tj∑n

j=1A
post
ij

+ (wi + εi)/2

with (β0, β1, β2) = (1, 1, 0.5), εi
i.i.d.∼ U [−1, 1] and εi ⊥⊥ wi. Hence, the error term is ui =

(wi + εi)/2.

Tables 3 and 4 present the estimation results of IV fits using SSIV and modified SSIV

with qn = log(n)
log(log(n))

/n and qn = n−1/5, respectively. For each table, the top panel reports the

results for n = 200, while the bottom panel shows the results for n = 800. The left panel

presents the mean and standard deviation of the IV estimators using SSIV, along with our

estimated standard errors and the coverage of 95% CIs across simulations, reported as “β̂iv”,

“std(β̂iv)”, “s.e.”, and “coverage”. The right panel provides the corresponding statistics for

the IV estimators using modified SSIV, reported as “β̂de”, “std(β̂de)”, “s.e.”, and “coverage”.

I begin with Table 3, where the network is relatively sparse. In this regime, the network

is relatively sparse, and Theorem 4.1 asserts that the SSIV estimators β̂iv are consistent. I

observe that the estimators are concentrated around the true values. As the sample size

increases from 200 to 800, the standard deviations of β̂iv
1 decrease by half, indicating a

convergence rate of
√
n. However, the standard deviation of β̂iv

2 shows a slower convergence

rate. In line with Theorem 4.2, the coverage of the 95% CIs using our variance estimate is

close to the target level.

Table 4 presents the results for the IV fits with qn = n−1/5, denser than the threshold

where SSIV remains valid. In Table 4, I also report the results with n = 1600. In line with

Theorem 4.1, I observe that β̂iv is no longer consistent for Designs 1 and 2; the estimators

can be arbitrarily off, and the standard deviation does not shrink as the sample size increases.

For Designs 3 and 4, β̂iv
1 remains consistent with convergence rate

√
n, while β̂iv

2 is not. By

applying the modified SSIV, I effectively project out some noise and reduce the estimation

error. The IV estimator β̂de
1 is consistent with a convergence rate of

√
n, while β̂de

2 is consistent

with a convergence rate of 1/
√
qn; the coverage of the 95% confidence intervals for both

estimators is approximately at the target level.
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Table 3: Simulation results of IV estimation with qn = log(n)
log(log(n))

/n

Design β SSIV modified SSIV

β̂iv std(β̂iv) s.e. coverage β̂de std(β̂de) s.e. coverage
n = 200

1 β1 = 1 1.001 0.083 0.089 0.950 1.001 0.083 0.087 0.950
β2 = 0.5 0.501 0.207 0.215 0.953 0.499 0.203 0.214 0.956

2 β1 = 1 0.999 0.083 0.087 0.954 1.000 0.083 0.082 0.940
β2 = 0.5 0.505 0.150 0.157 0.952 0.505 0.168 0.210 0.983

3 β1 = 1 0.999 0.083 0.083 0.944 0.999 0.083 0.083 0.944
β2 = 0.5 0.500 0.142 0.146 0.953 0.500 0.143 0.149 0.949

4 β1 = 1 1.000 0.082 0.084 0.949 1.000 0.082 0.084 0.950
β2 = 0.5 0.502 0.137 0.142 0.955 0.502 0.138 0.145 0.956

n = 800
1 β1 = 1 1.000 0.040 0.044 0.955 1.000 0.040 0.042 0.954

β2 = 0.5 0.501 0.099 0.101 0.951 0.501 0.098 0.097 0.946
2 β1 = 1 1.000 0.040 0.042 0.957 1.000 0.040 0.042 0.956

β2 = 0.5 0.500 0.076 0.076 0.948 0.501 0.078 0.081 0.958
3 β1 = 1 1.000 0.041 0.041 0.950 1.000 0.041 0.041 0.950

β2 = 0.5 0.500 0.072 0.071 0.946 0.500 0.072 0.072 0.946
4 β1 = 1 1.000 0.041 0.041 0.950 1.000 0.041 0.041 0.950

β2 = 0.5 0.501 0.068 0.069 0.957 0.501 0.068 0.069 0.953

Note: Simulation results for the IV estimators using SSIV and the modified SSIV with n ∈ {200, 800},
qn = log(n)

log(log(n))/n, and 5, 000 replications.

6 Empirical Application

In this section, I revisit Prina (2015), which offered access to formal savings accounts to a

random sample of poor households in 19 villages in Nepal.8 I apply the method in this paper

to make estimations and inference on the causal effects of interest.

I now provide a more detailed description of the empirical setting of the RCT in Prina

(2015), expanding on Example 2.1. Before the introduction of savings accounts, a baseline

survey was conducted in May 2010 across 19 villages in Pokhara. All households with a female

head aged 18-55 were surveyed. Following the baseline survey, half of the female household

heads were randomly assigned to the treatment group through a public lottery between late

May and early June 2010, offering them savings accounts at the local bank. The remaining

half, in the control group, did not receive this offer. An endline survey was conducted in June

2011, after the intervention. This study analyzes a sample of 915 households that participated

in both survey waves. Both surveys collected data on household socioeconomic characteristics

8Prina (2015) conducted the RCT and collected network data but did not perform any network analysis.
Comola and Prina (2021) studied the treatment effects while accounting for network changes and revisited
Prina (2015) as an empirical illustration. Comola and Prina (2023) also revisited the RCT from Prina (2015)
and focused on dyadic-level regressions to assess the treatment’s impact on financial flows. I integrate the
panel network data released by Comola and Prina (2023) with the outcome variables from Prina (2015). The
treatment variable is available in both datasets.

36



Table 4: Simulation results of IV estimation with qn = n−1/5

Design β SSIV modified SSIV

β̂iv std(β̂iv) s.e. coverage β̂de std(β̂de) s.e. coverage
n = 200

1 β1 = 1 1.006 0.236 0.307 0.980 0.999 0.114 0.123 0.945
β2 = 0.5 0.455 1.501 1.584 0.950 0.514 0.452 0.522 0.974

2 β1 = 1 0.946 0.330 0.369 0.972 0.997 0.144 0.167 0.952
β2 = 0.5 0.944 2.257 2.041 0.959 0.537 0.750 0.846 0.978

3 β1 = 1 0.999 0.085 0.090 0.939 0.999 0.084 0.088 0.940
β2 = 0.5 0.511 0.990 1.189 0.963 0.504 0.883 1.027 0.963

4 β1 = 1 1.000 0.091 0.086 0.950 1.000 0.083 0.084 0.950
β2 = 0.5 0.526 1.562 1.773 0.976 0.507 0.669 0.777 0.973

n = 800
1 β1 = 1 1.023 0.379 0.401 0.989 1.001 0.077 0.082 0.947

β2 = 0.5 0.376 2.167 2.106 0.947 0.498 0.348 0.380 0.966
2 β1 = 1 0.879 1.380 0.453 0.973 0.998 0.092 0.103 0.953

β2 = 0.5 1.278 8.703 2.507 0.957 0.509 0.463 0.521 0.971
3 β1 = 1 1.000 0.044 0.047 0.949 1.000 0.041 0.044 0.949

β2 = 0.5 0.518 0.957 1.041 0.952 0.494 0.709 0.777 0.961
4 β1 = 1 1.000 0.047 0.042 0.948 1.000 0.041 0.041 0.948

β2 = 0.5 0.514 1.921 1.991 0.973 0.489 0.435 0.489 0.969
n = 1600

1 β1 = 1 1.018 0.907 0.908 0.990 1.000 0.068 0.071 0.944
β2 = 0.5 0.405 5.250 5.023 0.968 0.499 0.320 0.340 0.960

2 β1 = 1 0.800 2.976 3.023 0.979 0.999 0.077 0.085 0.953
β2 = 0.5 1.685 17.444 17.494 0.916 0.506 0.395 0.438 0.967

3 β1 = 1 1.001 0.031 0.030 0.943 1.001 0.031 0.030 0.946
β2 = 0.5 0.507 0.876 0.903 0.958 0.499 0.579 0.615 0.958

4 β1 = 1 1.000 0.034 0.030 0.953 1.000 0.029 0.029 0.952
β2 = 0.5 0.477 2.201 2.219 0.970 0.501 0.370 0.414 0.970

Note: Simulation results for the IV estimators using SSIV and the modified SSIV with n ∈
{200, 800, 1600}, qn = n−1/5, and 5, 000 replications.

and informal financial transactions.

Following Comola and Prina (2023), I define financial links as transfers–loans or gifts, either

sent or received–between households, based on survey questions such as, “With whom did

you exchange loans or gifts?” The resulting networks, both pre- and post-intervention, were

sparse, with small groups and minimal clustering. Despite the total number of links remaining

stable (328 at baseline, 329 at endline), the network underwent significant reshuffling. As

shown in Example 2.1, 255 links were broken, and 256 new links formed by the endline.

Comola and Prina (2023) reported high uptake and usage of the savings accounts, with over

84% of treated households opening accounts and depositing about 8% of their baseline weekly

income nearly every week during the first year.

Table 5 presents the results of OLS estimates and IV estimators using both SSIV and

modified SSIV, across various outcomes, with corresponding standard errors shown in paren-
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theses. I also report the point estimates using the normalized SSIV,
∑n

j=1 A
pre
ij Tj∑n

j=1 A
pre
ij

, without

standard errors, as I do not conduct an asymptotic distribution analysis. The top panel

reports the results of household expenditures in the 30 days before the endline survey for

different categories, measured by Nepalese rupee. The expenditure categories include health,

education, festivals and ceremonies, meat and fish, fish, and other expenditures.9 The bottom

panel focuses on education-related expenditures, including school fees, textbooks, uniforms,

and school supplies (e.g., pens and pencils). For these expenditures, the sample is restricted

to households with school-age children (ages 6–16). For brevity, I omit the results for β0

across the various estimation specifications.

The discrepancy between the OLS and the IV estimators using SSIV, in either the sign

of the coefficients or their significance, highlights the bias caused by endogeneity due to

unobserved confounders. The IV results using SSIV show that the treatment affects various

outcomes through different channels. In the “Fish” expenditure column, the direct effect

of access to savings accounts on fish consumption is not statistically significant, while the

indirect effect, mediated through the fraction of treated friends, is significantly positive. A

0.1 increase in the fraction of friends with access to savings accounts leads to an increase in

fish consumption by Rs. 25.29. Since the fraction of friends with access to savings accounts is

0.062 higher for the treatment group compared to the control group, this implies an additional

Rs. 15.63 in fish consumption for the treatment group. The spillover effects, from assigning

others to the treated group versus the control group, result in an increase in fish consumption

by Rs. 252.91.

For total education expenditures, as well as expenditures on textbooks and school supplies,

the direct effects of access to savings accounts are positive and significant, while the indirect

effects through fraction of treated friends are not significant. Access to free savings accounts

leads to an increase of Rs. 574.43, Rs. 223.26, and Rs. 104.47 in total education expenditure,

school textbooks, and school supplies, respectively, compared to control units, holding the

fraction of treated friends constant. Our methods effectively disentangle the direct treatment

effects from the indirect effects mediated through networks, providing a clearer understanding

of the mechanisms by which the intervention influences the outcomes of interest. Moreover,

for outcomes where β̂iv
2 is not significant, the estimates β̂ols

1 and β̂iv
1 are closely aligned, as

the treatment is randomly assigned and omitted variable bias is not a concern in these cases.

Furthermore, the point estimators from IV fits using SSIV and normalized SSIV are

closely aligned, demonstrating the effectiveness of both versions of SSIV. Despite the relative

sparsity of the pre-intervention network, the results from the modified SSIV show that the

point estimators are closely aligned with those from using the SSIV and normalized SSIV.

9Other expenditures include clothes and footwear, personal care items, house cleaning articles, house
maintenance, and bus and taxi fares.
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This coherence further suggests that the modification based on the estimated eigenvectors

does not introduce excessive noise into the estimation.

For the sake of comparison, Table 5 also includes the corresponding results from Prina

(2015, Tables 5 and 6).10 Prina (2015) estimated the average effect of being assigned to

the treatment group on each outcome variable, with explanatory variables including the

treatment, the baseline value of the outcome variable, and a vector of baseline characteristics.11

The treatment indicator’s coefficient is referred to as the ITT due to the presence of non-

compliance. Similar to the OLS results in the top panel, for outcomes where β̂iv
2 in the IV

fits is not significant, the ITT estimators reported by Prina (2015) and the β̂iv
1 estimators

from the IV fits are closely aligned. This alignment suggests that unobserved confounders do

not bias the estimation of the (direct) treatment effect in these cases, as the treatment is

randomly assigned.

7 Conclusion

This paper investigates the identification and inference of treatment effects in RCTs with

network interference, focusing on two key aspects: (1) unobserved confounders affecting

both network formation and outcomes, and (2) network changes induced by the intervention.

The framework demonstrates that treatment affects outcomes in two distinct ways: directly

and indirectly through changes in the network mediator. Disentangling these channels

offers deeper insights into the intervention’s mechanisms and informs more effective policy

design. This paper presents methods for the estimation and inference of causal effects in

the presence of network interference, addressing endogeneity concerns. In the absence of

endogeneity, I recommend OLS estimation using post-intervention network data. When

unobserved confounders are present, I recommend IV estimation with SSIV for relatively

sparse networks and propose a modification to SSIV for denser networks. For all estimators,

I provide consistent variance estimators for normal approximation, ensuring valid inference.

More generally, this paper highlights a concern regarding the relevance condition of SSIV as

the network becomes denser. While I focus on the mean impact of peers, the discussion of

the SSIV relevance condition and denoising modification also provides insights applicable to

other forms of mediators.

This paper opens several avenues for future research. A natural extension would be to

incorporate endogenous and correlated peer effects, along with covariates, into the linear

model. An expanding body of research highlights the importance of measuring and accounting

10Prina (2015) did not analyze the expenditure on “Fish”, so I leave the result blank.
11Baseline characteristics include age, years of education, marital status of the account holder; number of

household members; baseline household income; and three dummies for the main source of household income.
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Table 5: Estimation result based on data from Prina (2015)

Method β̂ Total Health Festivals Meat Fish Other
Expend. & Ceremonies & Fish Expend.

OLS β̂ols
1 141.072 -670.366 267.112* 99.824 48.505 206.433

(1030.252) (644.920) (141.412) (96.476) (39.683) (687.006)

β̂ols
2 -39.811 -50.981 -157.612 151.700 -55.696 -277.696

(1125.085) (773.712) (119.425) (115.674) (35.796) (648.408)

SSIV β̂iv
1 -143.459 -729.080 232.207 107.500 33.276 106.640

(1122.582) (681.558) (153.465) (106.339) (42.139) (741.432)

β̂iv
2 5726.414 1138.892 549.756 -3.858 252.913* 1744.679

(6997.446) (4723.695) (964.534) (742.139) (150.832) (3573.983)

modified β̂de
1 -47.271 -745.607 272.332 135.879 27.030 129.909

SSIV (1130.105) (704.263) (155.618) (110.431) (42.708) (738.796)

β̂de
2 3777.096 1473.816 -263.414 -578.965 379.510* 1273.114

(9034.384) (6485.695) (1314.334) (962.715) (206.481) (4549.693)

normalized β̂1 34.099 -760.932 229.050 97.796 42.299 300.023

SSIV β̂2 2128.082 675.746 613.734 192.805 70.062 -2174.355
Prina (2015) ITT 340.780 -290.34 248.070* 153.600 – 49.120

(860.930) (540.710) (123.670) (87.770) – (569.010)

Total Exp. Exp. on Exp. on Exp. on Exp. on
in Education Sch. Fees Textbooks Sch. Uniforms Sch. Supplies

OLS β̂ols
1 562.276** 137.764 246.481** 74.264 103.767**

(281.922) (162.391) (105.114) (63.945) (45.880)

β̂ols
2 87.445 160.412 -91.316 -3.846 22.194

(336.824) (212.844) (111.511) (78.980) (56.184)

SSIV β̂iv
1 574.427* 183.217 223.261* 63.479 104.469**

(305.988) (180.058) (117.887) (67.727) (50.387)

β̂iv
2 -109.182 -575.128 284.441 170.681 10.823

(1318.538) (633.715) (668.099) (271.842) (223.504)

modified β̂de
1 576.798* 197.519 211.983* 64.979 100.048**

SSIV (295.529) (175.501) (114.828) (65.675) (48.519)

β̂de
2 -147.559 -806.571 466.935 146.417 82.376

(1395.153) (718.228) (644.052) (314.866) (219.500)

normalized β̂1 560.511 191.865 214.801 57.291 96.554

SSIV β̂2 116.003 -715.069 421.338 270.828 138.906
Prina (2015) ITT 667.560** 224.720 213.740* 113.150* 115.950**

(320.630) (193.600) (120.220) (65.400) (49.980)

Note: Dependent variables are expressed in Nepalese rupees (the exchange rate was roughly Rs. 70
to USD 1 during the study period). The significance level of the estimators is indicated with stars
in the usual manner: “***” means significant at α = 1%, “**” means significant at α = 5%, and“*”
means significant at α = 10%.
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for network changes when evaluating the welfare impacts of policies (Carrell et al., 2013;

Jackson, 2021; Banerjee et al., 2023). While the literature extensively examines optimal

treatment assignment under interference (Baird et al., 2018; Cai et al., 2022; Viviano, 2023b,a),

the challenge of designing effective policies that account for endogenous network evolution

remains unresolved. Furthermore, my methods rely on detailed panel network data, but

relaxing this requirement to single-period or aggregated network data would be desirable

(Alidaee et al., 2020; Breza et al., 2020). I leave these questions for future research.
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Poincaré, Probabilités et Statistiques, 56, 2141–2161. [29, 81]

Berry, S., J. Levinsohn, and A. Pakes (1995): “Automobile Prices in Market Equilib-

rium,” Econometrica, 63, 841–890. [24]

43



Bickel, P. J. and A. Chen (2009): “A Nonparametric View of Network Models and

Newman–Girvan and Other Modularities,” Proceedings of the National Academy of Sciences,

106, 21068–21073. [11]

Bickel, P. J., A. Chen, and E. Levina (2011): “The Method of Mo-

ments and Degree Distributions for Network Models,” The Annals of Statistics,

39, comment: Published in at http://dx.doi.org/10.1214/11-AOS904 the Annals of

Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics

(http://www.imstat.org). [21]

Blume, L. E., W. A. Brock, S. N. Durlauf, and R. Jayaraman (2015): “Linear

Social Interactions Models,” Journal of Political Economy, 123, 444–496. [3]

Borusyak, K. and P. Hull (2023): “Nonrandom Exposure to Exogenous Shocks,” Econo-

metrica, 91, 2155–2185. [4, 6, 21, 22]

Borusyak, K., P. Hull, and X. Jaravel (2022): “Quasi-Experimental Shift-Share

Research Designs,” The Review of Economic Studies, 89, 181–213. [6, 19, 23, 103]
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Appendix for “Endogenous Interference in Randomized

Experiments”

The supplementary materials contain the following sections.

Section A gives the proofs for the identification.

Section B gives the proofs for the results of OLS estimation.

Section C gives the proofs for the results of IV estimation with SSIV.

Section D gives the proofs for the results of IV estimation with the modified SSIV.

Section E gives the proofs for the results of IV estimation with the normalized SSIV.

Section F collects the proofs for some useful lemmas

Notation

Let Ni denote the degree of unit i in network A, i.e., Ni =
∑n

j=1Aij . Define g0(i, j) = gpre(wi, wj)

and g1(i, j) = gpost(wi, wj , Ti, Tj). Define g0(k) = E(g0(j, k) | wk). I use Ω(),ΩP() in the following

sense: an = Ω(bn) if an ≥ Cbn for n large enough, where C is a positive constant; Xn = ΩP(bn),

if for any δ > 0, there exists M,N > 0, s.t. P(|Xn| ≤ Mbn) ≤ δ for any n > N . Let ∥ · ∥op
denote the operator norm and ∥ · ∥F denote the Frobenious norm. I use “LLN”, “CMT” and

“CLT” to denote “law of large number”, “continuous mapping theorem” and “central limit

theorem,” respectively.

A Proof of results in Section 2

Proof of Theorem 2.1. The proof is adapted from the standard proof in the mediation analysis

(Pearl, 2001). We only prove for the discrete case, as the continuous and mixed variable cases follow

by analogous arguments. Given T−i = t−i and wi = w, we have

E
[
Yi
(
ti,Mi(t

′
i, T−i)

)
| T−i = t−i, wi = w

]
=
∑

mi∈M
E
(
Yi
(
ti,Mi(t

′
i, t−i)

)
|Mi(t

′
i, t−i) = mi, T−i = t−i, wi = w

)
Pr
(
Mi(t

′
i, t−i) = mi | T−i = t−i, wi = w

)
=
∑

mi∈M
E
(
Yi(ti,mi) |Mi(t

′
i, t−i) = mi, T−i = t−i, wi = w

)
Pr
(
Mi(t

′
i, t−i) = mi | T−i = t−i, wi = w

)
=
∑

mi∈M
E (Yi(ti,mi) | T−i = t−i, wi = w) Pr

(
Mi(t

′
i, t−i) = mi | T−i = t−i, wi = w

)
=
∑

mi∈M
E (Yi(ti,mi) | wi = w) Pr

(
Mi = mi | Ti = t′i, T−i = t−i, wi = w

)
=
∑

mi∈M
E (Yi | Ti = ti,Mi = mi, wi = w) Pr

(
Mi = mi | Ti = t′i, T−i = t−i, wi = w

)
.
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Taking expectations over T−i | wi = w, we have

E
[
Yi
(
ti,Mi(t

′
i, T−i)

)
| wi = w

]
=
∑

mi∈M

 E (Yi | Ti = ti,Mi = mi, wi = w)

·
∑

t−i∈{0,1}n−1

Pr (Mi = mi | Ti = ti, T−i = t−i, wi = w) Pr (T−i = t−i | wi = w)


=
∑

mi∈M
E (Yi | Ti = ti,Mi = mi, wi = w) Pr

(
Mi = mi | Ti = t′i, wi = w

)
=E

{
E (Yi |Mi, Ti = ti, wi = w) | Ti = t′i, wi = w

}
. (17)

If ti = t′i, we have E [Yi (ti,Mi(ti, T−i)) | wi = w] = E(Yi | Ti = ti, wi = w).

By (17), with ti = t′i and T−i = tn−1 and given wi = w, we have

E [Yi (ti,Mi(ti, tn−1)) | wi = w]

=E {E (Yi |Mi, Ti = ti, wi = w) | Ti = ti, T−i = tn−1, wi = w} .

Now we are ready to show the results. Define DE(ti;w) as the conditional direct effect with Ti = ti

and wi = w, IE(ti;w) as the conditional indirect effect with Ti = ti and wi = w, ToE(w) as the

conditional total effect with wi = w, and SE(ti;w) as the conditional spillover effect with Ti = ti

and wi = w. We only show ti = 0 since the results of ti = 1 follow from analogous arguments. By

(17), we can show that

DE(0;w) = E [Yi (1,Mi(0, T−i))− Yi (0,Mi(0, T−i)) | wi = w]

= E {E(Yi |Mi, Ti = 1, wi = w) | Ti = 0, wi = w} − E(Yi | Ti = 0, wi = w),

IE(0;w) = E [Yi (0,Mi(1, T−i))− Yi (0,Mi(0, T−i)) | wi = w]

= E {E(Yi |Mi, Ti = 0, wi = w) | Ti = 1, wi = w} − E(Yi | Ti = 0, wi = w),

ToE(w) = E [Yi (1,Mi(1, T−i))− Yi (0,Mi(0, T−i)) | wi = w]

= E(Yi | Ti = 1, wi = w)− E(Yi | Ti = 0, wi = w),

SE(ti;w) = E [Yi (ti,Mi(ti, T−i = 1n−1))− Yi (ti,Mi(ti, T−i = 0n−1)) | wi = w]

= E [E (Yi |Mi, Ti = ti, wi = w) | Ti = ti, T−i = 1n−1, wi = w]

− E [E (Yi |Mi, Ti = ti, wi = w) | Ti = ti, T−i = 0n−1, wi = w] .

The desired result follows from marginalizing over the distribution of w.

Proof of Corollary 2.1. We only prove for the discrete case, as the continuous and mixed variable

cases follow by analogous arguments. Under Assumption 3 and combing with Theorem 2.1, the

conditional DE equals

DE(w) =
∑

mi∈M
β1Pr(Mi = mi | Ti = 0, wi = w) = β1,
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and thus DE = β1 by marginalizing over the distribution of w. The conditional IE equals

IE(w) =
∑

mi∈M
(β0 + β2mi + λ(w)) {Pr(Mi = mi | Ti = 1, wi = w)− Pr(Mi = mi | Ti = 0, wi = w)}

=β2 · {E(Mi | Ti = 1, wi = w)− E(Mi | Ti = 0, wi = w)} .

Therefore, IE = β2 · {E(Mi | Ti = 1)− E(Mi | Ti = 0)}. The conditional ToE equals

ToE(w) =E(Yi | Ti = 1, wi = w)− E(Yi | Ti = 0, wi = w)

=
∑

mi∈M
{(β1 + β2mi) · Pr(Mi = mi | Ti = 1, wi = w)− β2mi · Pr(Mi = mi | Ti = 0, wi = w)}

=β1 + β2 · {E(Mi | Ti = 1, wi = w)− E(Mi | Ti = 0, wi = w)} .

Therefore, ToE = β1 + β2 · {E(Mi | Ti = 1)− E(Mi | Ti = 0)}. The conditional SE equals

SE(ti;w) =

[
E {E (Yi |Mi, Ti = ti, wi = w) | Ti = ti, T−i = 1n−1, wi = w}
−E {E (Yi |Mi, Ti = ti, wi = w) | Ti = ti, T−i = 0n−1, wi = w}

]
= β2

∑
mi∈M

mi [Pr(Mi = mi | Ti = ti, T−i = 1n−1, wi = w)− Pr(Mi = mi | Ti = ti, T−i = 0n−1, wi = w)]

= β2 · {E(Mi | Ti = ti, T−i = 1n−1, wi = w)− E(Mi | Ti = t, T−i = 0n−1, wi = w)} .

Therefore, SE(ti) = β2 · {E(Mi | Ti = ti, T−i = 1n−1)− E(Mi | Ti = ti, T−i = 0n−1)}.

B Proof of results in Section 3.3

Denote by xi = 1
n−1

∑
j ̸=iA

post
ij Tj and yi = 1

n−1

∑
j ̸=iA

post
ij . With the second-order Taylor

expansion of Mi at the conditional mean of (xi, yi):

θi =
(
E(Apost

ij Tj | Ti, wi), E(Apost
ij | Ti, wi)

)
,

we have Mi = ξi + r0,i + r1,i where

ξi =
E(Apost

ij Tj | Ti, wi)

E(Apost
ij | Ti, wi)

(18)

and

r0,i =
E(Apost

ij Tj | Ti, wi)

E(Apost
ij | Ti, wi)

1

n− 1

∑
j ̸=i

(
Apost

ij Tj

E(Apost
ij Tj | Ti, wi)

−
Apost

ij

E(Apost
ij | Ti, wi)

)
,
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r1,i =− 1

θ∗i (y)
2

1

(n− 1)2

∑
j ̸=i

(
Apost

ij Tj − E(Apost
ij Tj | Ti, wi)

)∑
j ̸=i

(
Apost

ij − E(Apost
ij | Ti, wi)

)
+

2θ∗i (x)

θ∗i (y)
3

1

(n− 1)2

∑
j ̸=i

(
Apost

ij − E(Apost
ij | Ti, wi)

)2

for some θ∗i = (θ∗i (x), θ
∗
i (y)) between θi and (xi, yi). Note that ξi is either a function of Ti

and wi, making it i.i.d. across units and independent of n, or it equals π when Apost is

conditionally independent of T . To simplify notations, define

Rij =
Apost

ij Tj

E(Apost
ij Tj | Ti, wi)

−
Apost

ij

E(Apost
ij | Ti, wi)

,

Uij = Apost
ij Tj − E(Apost

ij Tj | Ti, wi),

Wij = Apost
ij − E(Apost

ij | Ti, wi).

By definition, we have

E(Rij | Ti, wi) = 0, E(Uij | Ti, wi) = 0, and E(Wij | Ti, wi) = 0.

Therefore, we can rewrite the remainder terms as

r0,i = ξi
1

n− 1

∑
k ̸=i

Rik,

r1,i =
1

(n− 1)2

∑
k ̸=i

(
−UikWik

θ∗i (y)
2
+

2θ∗i (x)

θ∗i (y)
3
W 2

ik

)
+

1

(n− 1)2

∑
(k,l)
k ̸=l

(
−UikWil

θ∗i (y)
2
+

2θ∗i (x)

θ∗i (y)
3
WikWil

)
.

Define µr1,i = E(r1,i | Ti, wi). By direct algebra, we can show that

µr1,i =
1

n− 1
E

(
−UikWik

θ∗i (y)
2
+

2θ∗i (x)

θ∗i (y)
3
W 2

ik | Ti, wi

)
= OP

(
1

nqpostn

)
. (19)

Then we can decompose Mi as Mi = ξi + µr1,i + r0,i + (r1,i − µr1,i), where the last two terms

are mean zero.

B.1 Auxiliary Lemmas

Lemma B.1. Under Assumptions 1, we have

1

n

n∑
i=1

Mi =
1

n

n∑
i=1

(ξi + µr1,i) +OP

 1

n

√
qpostn

 , (20)
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1

n

n∑
i=1

TiMi =
1

n

n∑
i=1

Ti(ξi + µr1,i) +OP

 1

n

√
qpostn

 , (21)

1

n

n∑
i=1

M2
i =

1

n

n∑
i=1

(ξi + µr1,i)
2 + E

(
(r0,i + r1,i − µr1,i)

2
)
+OP

 1

n

√
qpostn

 . (22)

Proof of Lemma B.1. See proof in Section F.2.

Lemma B.2. If ∆ = OP(µ) with µ = o(1), and Λ converges in probability to a finite and invertible

matrix, then (Λ +∆)−1 − Λ−1 = OP(µ).

Proof of Lemma B.2. This is Lemma A5 in Su and Ding (2021), which is useful for deriving the

probability limit of the inverse of a matrix. With ∆ = oP(1), we have Λ +∆ = Λ+ oP(1). Because

Λ converges in probability to a finite and invertible matrix, (Λ + ∆)−1 = Λ−1 + oP(1). Li and Ding

(2020, Lemma A10) stated that

(Λ +∆)−1 − Λ−1 = Λ−1∆(Λ +∆)−1Λ−1 − Λ−1∆Λ−1,

which implies

(Λ +∆)−1 − Λ−1 = OP(1)OP(µ)OP(1) = OP(µ).

Lemma B.3. Define ai as an i.i.d. random variable with nonzero mean and constant variance.

Under Assumption 1, then

1

n

n∑
i=1

ai(r0,i + r1,i − µr1,i) = OP

 1

n

√
qpostn

 , (23)

1

n

n∑
i=1

(r0,i + r1,i − µr1,i)
2 = E

(
(r0,i + r1,i − µr1,i)

2
)
+OP

(
1

√
nnqpostn

)
+OP

(
1

n

)
. (24)

Proof of Lemma B.3. See proof in Section F.3.

B.2 Consistency

To establish the consistency of the OLS estimates β̂ols = (X⊤X)−1(X⊤Y ), we first show the

probability limit of (X⊤X)−1.

Theorem B.1. Assume Assumptions 1 and 3.
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Case (a): Define

Λ =
1

n

n∑
i=1

 1 Ti ξi + µr1,i

Ti Ti Ti(ξi + µr1,i)

ξi + µr1,i Ti(ξi + µr1,i) (ξi + µr1,i)
2 + E((r0,i + r1,i − µr1,i)

2)

 .

Then X⊤X = Λ+OP

(
1

n
√

qpost
n

)
, and thus (X⊤X)−1 = E(Λ)−1 +OP

(
1√
n

)
.

Case (b): We show that

(
X⊤X

)−1
=


a∗11 +OP

(
1√
n

)
a∗12 +OP

(
1

n
√

qpost
n

)
a∗13 +OP

(
1√
n

)
a∗12 +OP

(
1

n
√

qpost
n

)
a∗22 +OP

(
1

n
√
nqpost

n

)
OP

(
1

n
√

qpost
n

)
a∗13 +OP

(
1√
n

)
OP

(
1

n
√

qpost
n

)
a∗33 +OP

(
1√
n

)


a∗33a

∗
22 − (a∗23)

2 +OP

(
1

n
√
nqpost

n

)
where

a∗11 = πE
(
(ξ + µr1,i)

2
)
− (E (Ti(ξ + µr1,i)))

2 + πE
(
(r0,i + r1,i − µr1,i)

2
)

a∗12 = − πVar(µr1,i)− πE
(
(r0,i + r1,i − µr1,i)

2
)

a∗13 = − π(1− π)E (ξ + µr1,i)

a∗22 = Var(µ2r1,i) + E
(
(r0,i + r1,i − µr1,i)

2
)

a∗33 = π(1− π).

Proof of Theorem B.1. We prove the results under Cases (a) and (b), respectively.

Case (a): In this case, ξi is a function of Ti and wi with constant variance. It suffices to show

that X⊤X converges in probability to a finite and invertible matrix. As we show in Lemma B.1,

X⊤X = Λ+OP

 1

n

√
qpostn

 ,

where Λ converges in probability to a finite and invertible matrix E(Λ). By Lemma B.2 and CMT,

we have (X⊤X)−1 = (E(Λ))−1 + oP(1).

Case (b): In this case, we have constant ξi = ξ. The probability limit of X⊤X, denoted by E(Λ),

is not invertible, and therefore Lemma B.2 cannot be applied. Thus, we first derive the closed form
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of (X⊤X)−1, then show the probability limit. By direct algebra, the closed form of (X⊤X)−1 is

(
X⊤X

)−1
=

1

det(X⊤X)

a11 a12 a13

a12 a22 a23

a13 a23 a33

 (25)

where

a11 =

(
1

n

n∑
i=1

Ti

)(
1

n

n∑
i=1

M2
i

)
−

(
1

n

n∑
i=1

TiMi

)2

a12 =

(
1

n

n∑
i=1

Mi

)(
1

n

n∑
i=1

TiMi

)
−

(
1

n

n∑
i=1

Ti

)(
1

n

n∑
i=1

M2
i

)

a13 = −

(
1

n

n∑
i=1

Ti

)(
1

n

n∑
i=1

(1− Ti)Mi

)

a22 =

(
1

n

n∑
i=1

M2
i

)
−

(
1

n

n∑
i=1

Mi

)2

a23 =

(
1

n

n∑
i=1

Ti

)(
1

n

n∑
i=1

Mi

)
−

(
1

n

n∑
i=1

TiMi

)

a33 =

(
1

n

n∑
i=1

Ti

)
−

(
1

n

n∑
i=1

Ti

)2

and

det(X⊤X) = a33a22 − a223.

We show the probability limits of the terms in (25) one by one.

(1) a11: With constant ξ and by Lemma B.1, we expand a11 into:

a11 =

(
1

n

n∑
i=1

Ti

)(
1

n

n∑
i=1

M2
i

)
−

(
1

n

n∑
i=1

TiMi

)2

=

(
π +OP

(
1√
n

))E ((ξ + µr1,i)
2
)
+ E

(
(r0,i + r1,i − µr1,i)

2
)
+OP

 1

n

√
qpostn


−

E(Ti(ξ + µr1,i)) +OP

(
1√
n

)
+OP

 1

n

√
qpostn

2

=

(
π +OP

(
1√
n

))E ((ξ + µr1,i)
2
)
+ E

(
(r0,i + r1,i − µr1,i)

2
)
+OP

 1

n

√
qpostn


−
(
E (Ti(ξ + µr1,i))

2 +OP

(
1√
n

))

57



=a∗11 +OP

(
1√
n

)
.

(2) a12: With constant ξ and by Lemma B.1, we have

a12 =

(
1

n

n∑
i=1

Mi

)(
1

n

n∑
i=1

TiMi

)
−

(
1

n

n∑
i=1

Ti

)(
1

n

n∑
i=1

M2
i

)

=ξ

(
1

n

n∑
i=1

Tiµr1,i − T̄
1

n

n∑
i=1

µr1,i

)
+

1

n

n∑
i=1

µr1,i
1

n

n∑
i=1

Tiµr1,i − T̄
1

n

n∑
i=1

µ2r1,i − T̄
1

n

n∑
i=1

(r0,i + r1,i − µr1,i)
2

+ ξ

(
1

n

n∑
i=1

Ti(r0,i + r1,i − µr1,i)−
1

n

n∑
i=1

Ti
1

n

n∑
i=1

(r0,i + r1,i − µr1,i)

)

+
1

n

n∑
i=1

µr1,i
1

n

n∑
i=1

Ti(r0,i + r1,i − µr1,i) +
1

n

n∑
i=1

(r0,i + r1,i − µr1,i)
1

n

n∑
i=1

Tiµr1,i

+
1

n

n∑
i=1

(r0,i + r1,i − µr1,i)
1

n

n∑
i=1

Ti(r0,i + r1,i − µr1,i)− 2T̄
1

n

n∑
i=1

µr1,i(r0,i + r1,i − µr1,i)

=a∗12 +OP

 1

n

√
qpostn

 . (26)

(3) a13. By Lemma B.1, we have

a13 =−
(
π +OP

(
1√
n

))(
E ((1− Ti)(ξ + µr1,i)) +OP

(
1√
n

))
= a∗13 +OP

(
1√
n

)
. (27)

(4) a22. With constant ξ and by Lemma B.1, we have

a22 =

(
1

n

n∑
i=1

M2
i

)
−

(
1

n

n∑
i=1

Mi

)2

=
1

n

n∑
i=1

µ2r1,i −

(
1

n

n∑
i=1

µr1,i

)2

+
1

n

n∑
i=1

(r0,i + r1,i − µr1,i)
2

+
2

n

n∑
i=1

µr1,i(r0,i + r1,i − µr1,i)−
2

n

n∑
i=1

µr1,i
1

n

n∑
i=1

(r0,i + r1,i − µr1,i)−

(
1

n

n∑
i=1

(r0,i + r1,i − µr1,i)

)2

=
1

n

n∑
i=1

µ2r1,i −

(
1

n

n∑
i=1

µr1,i

)2

+
1

n

n∑
i=1

(r0,i + r1,i − µr1,i)
2 +OP

 1

n2qpostn

√
qpostn


= a∗22 +OP

(
1

√
nnqpostn

)
. (28)
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(5) a23. With constant ξ and by Lemma B.1, we have

a23 =

(
1

n

n∑
i=1

Ti

)(
1

n

n∑
i=1

Mi

)
−

(
1

n

n∑
i=1

TiMi

)

=

(
1

n

n∑
i=1

Ti

)(
1

n

n∑
i=1

µr1,i

)
−

(
1

n

n∑
i=1

Tiµr1,i

)

+

(
1

n

n∑
i=1

Ti

)(
1

n

n∑
i=1

(r0,i + r1,i − µr1,i)

)
−

(
1

n

n∑
i=1

Ti(r0,i + r1,i − µr1,i)

)

=OP

 1

n

√
qpostn

 . (29)

(6) a33. By the i.i.d. treatment and CLT, we have a33 = a∗33 +OP

(
1√
n

)
.

(7) det(X⊤X). By combining (28) and (29), the denominator of (25) is

det(X⊤X) = a33a22 − a223 = a∗33a
∗
22 +OP

(
1

√
nnqpostn

)
with a∗33a

∗
22 ≍

1

nqpostn

.

Proof of Theorem 3.1. We prove the results under Cases (a) and (b), respectively.

Case (a): By Theorem B.1, (X⊤X)−1 = (E(Λ))−1 + oP(1), which is OP(1). By Lemma B.3,

1

n

n∑
i=1

Miui =
1

n

n∑
i=1

(ξi + µr1,i)ui +
1

n

n∑
i=1

(r0,i + r1,i − µr1,i)ui = OP

(
1√
n

)
.

With i.i.d. data, we have

1

n

n∑
i=1

ui = OP

(
1√
n

)
and

1

n

n∑
i=1

Tiui = OP

(
1√
n

)
.

Together with Theorem B.1 and CMT, this completes the proof that β̂ols − β = OP

(
1√
n

)
.

Case (b): We prove by the closed form of β̂ols − β. By direct algebra, we have

β̂ols1 − β1 =
a22

1
n

∑n
i=1(Ti − T̄ )ui + a23

1
n

∑n
i=1(Mi − M̄)ui

det(X⊤X)
,

β̂ols2 − β2 =
a32

1
n

∑n
i=1(Ti − T̄ )ui + a33

1
n

∑n
i=1(Mi − M̄)ui

det(X⊤X)
,

β̂ols0 − β0 = ū− (β̂ols1 − β1)T̄ − (β̂ols2 − β2)M̄.
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With i.i.d. data, we have

1

n

n∑
i=1

(Ti − T̄ )ui = OP

(
1√
n

)
.

It remains to show 1
n

∑n
i=1(Mi − M̄)ui. By (19) and Lemma B.3, we can show that

1

n

n∑
i=1

(Mi − M̄)ui =
1

n

n∑
i=1

µr1,iui −
1

n

n∑
i=1

µr1,i
1

n

n∑
i=1

ui

+
1

n

n∑
i=1

(r0,i + r1,i − µr1,i)ui −
1

n

n∑
i=1

(r0,i + r1,i − µr1,i)
1

n

n∑
i=1

ui

=OP

 1

n

√
qpostn

 .

By combining these results and Theorem B.1, we have

β̂ols1 − β1 =
a22

1
n

∑n
i=1(Ti − T̄ )ui + a23

1
n

∑n
i=1(Mi − M̄)ui

det(X⊤X)

=

(
a∗22 +OP

(
1√

nnqpost
n

))
OP

(
1√
n

)
+OP

(
1

n
√

qpost
n

)
OP

(
1

n
√

qpost
n

)
π(1− π)a∗22 +OP

(
1√

nnqpost
n

)
=OP

(
1√
n

)
and

β̂ols2 − β2 =
a23

1
n

∑n
i=1(Ti − T̄ )ui + a33

1
n

∑n
i=1(Mi − M̄)ui

det(X⊤X)

=

OP

(
1

n
√

qpost
n

)
OP

(
1√
n

)
+
(
π(1− π) +OP

(
1√
n

))
OP

(
1

n
√

qpost
n

)
π(1− π)a∗22 +OP

(
1√

nnqpost
n

)
=OP

(√
qpostn

)
.

Therefore, it follows that

β̂ols0 − β0 =ū− (β̂ols1 − β1)T̄ − (β̂ols2 − β2)M̄ = OP

(√
qpostn

)
.

Thus, we complete the proof.
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B.3 Asymptotic normality

To prove the asymptotic normality of the OLS estimators in Theorem 3.2, we divide the proof

into two cases: when nqpostn ≻ 1 and when the network is with bounded degree nqpostn ≍ 1.

For the former case, we show that 1
n

∑n
i=1Miui can be approximated by the average of i.i.d.

variables and then apply the Lindeberg–Lévy CLT. For the latter case, we establish the CLT

with weak dependence in Theorem B.2, which makes uses of the proof of Theorem 3.5 in

Ross (2011) and is the unconditional version of Theorem 4 in Leung (2020).

Let H1, . . . ,Hn be real–valued random variables. Define the indicator of dependency as

Dij = 1

{
A⋄

ij +max
k

A⋄
ikA

⋄
kj + 1{i = j} > 0

}
(30)

where ⋄ ∈ {pre,post}. In words, two units are dependent if they are directly connected, share

at least one common friend, or refer to the same index. An n× n binary symmetric matrix D

with (i, j)th element being Dij is a dependency graph on H if for any two disjoint subsets

I1, I2 ⊆ {1, . . . , n}, we have {Hi : i ∈ I1} ⊥⊥ {Hi : i ∈ I2} conditional on the event that Dij = 0

for all i ∈ I1 and j ∈ I2. By construction, Dii = 1 for all i.

Define Si = {j : Dij = 1} and Si = |Si| =
∑n

j=1Dij. Define σ2n = Var (
∑n

i=1Hi). Let (D3)ij

denote the (i, j)th entry of the third matrix power of D.

Theorem B.2 (CLT for local dependence). Under the following assumptions, σ−1
n

∑n
i=1Hi

d→
N (0, 1) as n→ ∞:

(a) σ2n = O(n);

(b) maxiE
[
|Hi|4

]
= O(1);

(c) n−1
∑n

i=1 S
2
i = oP(

√
n), n−1

∑n
i=1 S

3
i = oP(n), and n

−1
∑n

i=1

∑
j ̸=i(D

3)ij = oP(n).

Proof of Theorem B.2. For any two random variables U, V with respective probability laws µ(·) and
ν(·), define their Wasserstein distance as

∆(U, V ) = sup
f∈F

∣∣∣∣∫ f(x)dµ(x)−
∫
f(x)dν(x)

∣∣∣∣ ,
where F = {f : R → R : |f(x)− f(y)| ≤ |x− y|}. The convergence of ∆(U, V ) implies convergence

of the Kolmogorov metric distance between U and V (see e.g. Ross (2011, Proposition 1.2)), which,

in turn, implies weak convergence. Thus, the theorem holds if

∆

(
1

σn

n∑
i=1

Hi,N (0, 1)

)
p→ 0.

61



The distance is bounded above by

∆

(
1

σn

n∑
i=1

Hi,N (0, 1)

)
≤ 1

σ3n

n∑
i=1

E

∣∣∣∣∣∣Hi

∑
j∈Si

Hj

2∣∣∣∣∣∣
+

√
2√
πσ2n

√√√√√Var

 n∑
i=1

∑
j∈Si

HiHj



≤ 1

σ3n

n∑
i=1

∑
j,k∈Si

E [|HiHjHk|] +
√
2√
πσ2n

√√√√√Var

 n∑
i=1

∑
j∈Si

HiHj


≤ max

i
E
[
|Hi|3

] n
σ3n

1

n

n∑
i=1

S2
i

+
1√
n

(
σ2n
n

)−1(
4

π
max

i
E
[
H4

i

])1/2
 4

n

n∑
i=1

S3
i +

3

n

n∑
i=1

∑
j=1

(G3)ij

1/2

,

which is oP(1) under Assumptions (a)-(c).

We verify Assumption (c) in Theorem B.2 when nq⋄n ≍ 1 for ⋄ ∈ {pre,post}.

Lemma B.4. Suppose nq⋄n ≍ 1 for ⋄ ∈ {pre, post}. Then

(i) 1
n

∑n
i=1 S

2
i = oP(

√
n), (ii) 1

n

∑n
i=1 S

3
i = oP(n), and (iii) 1

n

∑n
i=1

∑
j ̸=i(D

3)ij = oP(n).

Proof of Lemma B.4. For (i), we bound it in L1 norm:

E

(
1

n

n∑
i=1

S2
i

)
≤E

 1

n

n∑
i=1

 n∑
j=1

A⋄
ij +

n∑
j=1

∑
k ̸=j

A⋄
ikA

⋄
kj

2
≤2E

 1

n

n∑
i=1

 n∑
j=1

A⋄
ij

2+ 2E

 1

n

n∑
i=1

 n∑
j=1

∑
k ̸=j

A⋄
ikA

⋄
kj

2
where

E

 1

n

n∑
i=1

 n∑
j=1

A⋄
ij

2 =
1

n

n∑
i=1

E

 n∑
j=1

A⋄
ij +

n∑
j=1

∑
k ̸=j

A⋄
ijA

⋄
kj

 ≤ C1nq
⋄
n + C2n

2(q⋄n)
2 ≤ C

and by the AM-GM inequality, the second term is bounded above by

E

 1

n

n∑
i=1

 n∑
j=1

∑
k ̸=j

A⋄
ikA

⋄
kj

2 =
1

n

n∑
i=1

E

 ∑
(j1,k1)

A⋄
ik1
A⋄

k1j1

∑
(j2,k2)

A⋄
ik2
A⋄

k2j2

 ≤ Cn4(q⋄n)
4 ≤ C.
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For (ii), we bound it in L1 norm:

E

(
1

n

n∑
i=1

S3
i

)
≤E

 1

n

n∑
i=1

 n∑
j=1

A⋄
ij +

∑
(j,k)

A⋄
ikA

⋄
kj

3
≤4E

 1

n

n∑
i=1

 n∑
j=1

A⋄
ij

3+ 4E

 1

n

n∑
i=1

∑
(j,k)

A⋄
ikA

⋄
kj

3 .
By analogous argument to showing (i), we have for the first term

E

 n∑
j=1

A⋄
ij

3 =
1

n

n∑
i=1

E

 n∑
j=1

A⋄
ij +

∑
(j1,j2)
j1 ̸=j2

A⋄
ij1A

⋄
ij2 +

∑
(j1,j2,j3)
all distinct

A⋄
ij1A

⋄
ij2A

⋄
ij3

 ≤ C

and for the second term,

1

n

n∑
i=1

E


∑

(j,k)
j ̸=k

A⋄
ikA

⋄
kj


3 =

1

n

n∑
i=1

E

 ∑
(j1,k1)
j1 ̸=k1

A⋄
ik1
Ak1j1

∑
(j2,k2)
j2 ̸=k2

A⋄
ik2
A⋄

k2j2

∑
(j3,k3)
j3 ̸=k3

A⋄
ik3
A⋄

k3j3

 ≤ C.

For (iii), by definition, we have

(D3)ij =

n∑
k=1

(D2)ikDkj =
∑
(k,l)

DilDlkDkj

where for i ̸= l, we have Dil ≤ A⋄
il +maxhA

⋄
ihA

⋄
hl. Then

1

n

n∑
i=1

∑
j ̸=i

(D3)ij =
1

n

n∑
i=1

∑
j ̸=i

∑
(k,l)

DilDlkDkj

≤ 1

n

n∑
i=1

∑
j ̸=i

∑
(k,l)

(
A⋄

il +max
h

A⋄
ihA

⋄
hl

)(
A⋄

lk +max
h

A⋄
lhA

⋄
hk

)(
A⋄

kj +max
h

A⋄
khA

⋄
hj

)
.

Expanding the brackets involves four cases, depending on whether the individuals are directly

connected or connected through a common friend. We only show one case as other cases follow from

analogous arguments. For the case where they are all connected through a common friend, we have

1

n

n∑
i=1

∑
j ̸=i

∑
(k,l)

E

[(
max
h

A⋄
ihA

⋄
hl

)(
max
h

A⋄
lhA

⋄
hk

)(
max
h

A⋄
khA

⋄
hj

)]

≤ 1

n

n∑
i=1

∑
j ̸=i

∑
(k,l)

∑
(h1,h2,h3)

E
[(
A⋄

ih1
A⋄

h1l

) (
A⋄

lh2
A⋄

h2k

) (
A⋄

kh3
A⋄

h3j

)]
≤ Cn6(q⋄n)

6 ≤ C.
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By combining these four cases, we can show that 1
n

∑n
i=1

∑
j ̸=i(D

3)ij = oP(
√
n).

Proof of Theorem 3.2. We complete the proof in three steps.

Step 1: asymptotic normality. To obtain our desired result, we first show that
∑n

i=1Xiui,

the numerator of β̂ols − β, converges to a normal distribution with asymptotic variance

V ols
num ≡ Var

(
n∑

i=1

Xiui

)
=


∑n

i=1E(u2i ) π
∑n

i=1E(u2i )
∑n

i=1E(Miu
2
i )

π
∑n

i=1E(u2i ) π
∑n

i=1E(u2i )
∑n

i=1E(TiMiu
2
i )∑n

i=1E(Miu
2
i )

∑n
i=1E(TiMiu

2
i )

∑n
i=1E(M2

i u
2
i )

 . (31)

We divide the proof into two cases.

Case 1: nqpostn ≻ 1. By Taylor expansion and Lemma B.3,

1

n

n∑
i=1

Miui =
1

n

n∑
i=1

(ξi + µr1,i)ui +
1

n

n∑
i=1

(r0,i + r1,i − µr1,i)ui

=
1

n

n∑
i=1

ξiui +OP

(
1

√
nnqpostn

)
+OP

 1
√
n

√
nqpostn


=

1

n

n∑
i=1

ξiui + oP

(
1√
n

)
. (32)

It implies that 1
n

∑n
i=1Miui can be approximated by 1

n

∑n
i=1 ξiui, which is the average of i.i.d.

random variables, with a small noise oP

(
1√
n

)
. Define b̃ = 1√

n

∑n
i=1(ui, Tiui, ξiui)

⊤. By the Cramer–

Wold theorem and Lindeberg–Lévy CLT, we can show that

Var(b̃)−1/2b̃
d→ N (0, I3).

With nqpostn ≻ 1, we have E[(r0,i + r1,i − µr1,i)
2] = o(1), and thus

Var(b̃) =

 E(u2i ) πE(u2i ) E(ξi)E(u2i )

πE(u2i ) πE(u2i ) E(Tiξi)E(u2i )

E(ξi)E(u2i ) E(Tiξi)E(u2i ) E(ξ2i )E(u2i )

 =
1

n
V ols
num + o(1).

Together with (32), the CLT follows:

(V ols
num)

−1/2

(
n∑

i=1

Xiui

)
d→ N (0, I3).

Case 2: nqpostn ≍ 1. It suffices to verify the assumptions in Theorem B.2. Assumption (a) follows

from V ols
num = O(1) and (b) follows from Assumption 3 and boundedness of Ti and Mi. Assumption

(c) follows from applying Lemma B.4 to Apost. Then by Theorem B.2 and Cramer–Wold device, we
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can show

(V ols
num)

−1/2

(
n∑

i=1

Xiui

)
d→ N (0, I3) .

Step 2: consistent variance estimator. We show that 1
n(V̂

ols
num − V ols

num) = oP(1). We only

show the convergence of 1
n

∑n
i=1M

2
i (û

ols
i )2 to E(M2

i u
2
i ) since the remaining terms follow from

similar arguments and we omit them for brevity. Notice that ûolsi = ui − (β̂ols − β)⊤Xi and

β̂ols − β = oP(1). By expanding the square, we have

1

n

n∑
i=1

M2
i (û

ols
i )2 =

1

n

n∑
i=1

M2
i u

2
i −

2

n

n∑
i=1

M2
i ui(β̂

ols − β)⊤Xi +
1

n

n∑
i=1

M2
i

(
(β̂ols − β)⊤Xi

)2
. (33)

For the first term of (33), we have

1

n

n∑
i=1

M2
i u

2
i =

1

n

n∑
i=1

(ξi + µr1,i)
2u2i +

2

n

n∑
i=1

(ξi + µr1,i)(r0,i + r1,i − µr1,i)u
2
i +

1

n

n∑
i=1

(r0,i + r1,i − µr1,i)
2u2i

=E
(
(ξi + µr1,i)

2u2i
)
+ E

(
(r0,i + r1,i − µr1,i)

2u2i
)
+OP

(
1√
n

)
+OP

 1

n

√
qpostn


=E(M2

i u
2
i ) + oP(1)

by Lemma B.3. For the second term of (33), we have

1

n

n∑
i=1

M2
i ui(β̂

ols − β)⊤Xi = (β̂ols0 − β0)
1

n

n∑
i=1

M2
i ui + (β̂ols1 − β1)

1

n

n∑
i=1

M2
i Tiui + (β̂ols2 − β2)

1

n

n∑
i=1

M3
i ui.

By the bounded support of Mi, we can show that

E

( 1

n

n∑
i=1

M2
i ui

)2
 = E

 1

n2

n∑
i=1

M4
i u

2
i +

1

n2

n∑
i=1

∑
j ̸=i

M2
i M

2
j uiuj

 ≤ C

n
,

and it implies that 1
n

∑n
i=1M

2
i ui = OP

(
1√
n

)
. By applying analogous arguments to the other terms

and with β̂ols − β = oP(1), we can show that

1

n

n∑
i=1

M2
i ui(β̂

ols − β)⊤Xi = oP(1).

For the last term of (33), we have

1

n

n∑
i=1

M2
i

(
(β̂ols − β)⊤Xi

)2
≤ 3

[
(β̂ols0 − β0)

2 1

n

n∑
i=1

M2
i + (β̂ols1 − β1)

2 1

n

n∑
i=1

TiM
2
i + (β̂ols2 − β2)

2 1

n

n∑
i=1

M4
i

]
,
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which is oP(1) by the bounded support of Mi and β̂
ols − β = oP(1). By combining these results, we

can show that

1

n

n∑
i=1

M2
i (û

ols
i )2 =E(M2

i u
2
i ) + oP(1).

Step 3: Steps 1–2 and CMT together imply the desired result:

(
V̂ ols
num

)−1/2
(

n∑
i=1

Xiui

)
d→ N (0, I3).

By Theorem B.1, we have shown the probability limit of (X⊤X)−1. Then together with CMT, we

can show that (
V̂ ols

)−1/2
(β̂ols − β)

d→ N (0, I3).

C Proof of results in Section 4.1

C.1 Auxiliary Lemmas

Define ϕi as an i.i.d. random variable with constant variance. Define the conditional

expectation Qϕ
j = E

[
Apre

ij ϕi

qpre
n

| wj

]
.

Lemma C.1. Under Assumptions 1 and 3,

1

n2qpren

n∑
i=1

Zssiv
i ϕi =

1

n

n∑
i=1

(Ti − π)Qϕ
i +OP

(
1

√
n
√
nqpren

)
. (34)

Proof of Lemma C.1. By reordering the index, we have

1

n2qpren

n∑
i=1

Zssiv
i ϕi =

1

n2qpren

n∑
i=1

∑
j ̸=i

Apre
ij (Tj − π)ϕi =

1

n

n∑
j=1

(Tj − π)
1

nqpren

∑
i ̸=j

Apre
ij ϕi.

Note that, for fixed j, given wj ,
Apre

ij ϕi

qpre
n

are i.i.d.. Then we have

E

 1

n− 1

∑
i ̸=j

Apre
ij ϕi

qpren
−Qϕ

j

2 =
1

n− 1
E

(Apre
ij ϕi

qpren
−Qϕ

j

)2


≤ 1

(n− 1)qpren
E

[
Apre

ij ϕ
2
i

qpren

]
≤ C

(n− 1)qpren
.
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We complete the proof by showing that

E

 1

n

n∑
j=1

(Tj − π)

 1

nqpren

∑
i ̸=j

Apre
ij ϕi −Qϕ

j

2
=

1

n2

n∑
j=1

π(1− π)E

 1

nqpren

∑
i ̸=j

Apre
ij ϕi −Qϕ

j

2 ≤ C

n2qpren
.

Lemma C.2. Under Assumption 1, we have

1

n2qpren

n∑
i=1

MiZ
ssiv
i =

E [Zssiv
i (r0,i + r1,i − µr1,i)]

nqpren
+OP

(
1√
n

)
, (35)

Proof of Lemma C.2. See proof in Section F.4.

Now we analyze 1
n

∑n
i=1(Z

ssiv
i − Z̄ssiv)(Mi − M̄), which measures the relevance of the SSIV.

Lemma C.3. Under Assumptions 1 and 3, then

1

n

n∑
i=1

(Zssiv
i − Z̄ssiv)(Mi − M̄) =

OP

(
min{qpren ,qpost

n }
qpost
n

)
+OP

(
qpren√
nqpost

n

)
if Var(ξi) = 0;

OP

(
min{qpren ,qpost

n }
qpost
n

)
+OP (

√
nqpren ) if Var(ξi) > 0.

Proof of Lemma C.3. We can rewrite it as

1

n

n∑
i=1

Zssiv
i Mi − Z̄ssivM̄ =

1

n

n∑
i=1

Zssiv
i (ξi + µr1,i)− Z̄ssiv 1

n

n∑
i=1

(ξi + µr1,i)

+
1

n

n∑
i=1

Zssiv
i (r0,i + r1,i − µr1,i)− Z̄ssiv 1

n

n∑
i=1

(r0,i + r1,i − µr1,i).

By the argument in the proof of Lemma C.2 (see (92) for details), we show that

1

n

n∑
i=1

Zssiv
i (r0,i + r1,i − µr1,i) = E [Zssiv

i (r0,i + r1,i − µr1,i)] +OP

(
qpren√
nqpostn

)

where

E [Zssiv
i (r0,i + r1,i − µr1,i)] ≍

min{qpren , qpostn }
qpostn

.

By Lemma C.1 and Lemma B.3, we can show that

Z̄ssiv 1

n

n∑
i=1

(r0,i + r1,i − µr1,i) = OP

(
nqpren√
n

)
OP

 1

n

√
qpostn

 = OP

 qpren√
nqpostn

 .
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For the sum of the first two terms, we consider Cases (a) and (b), respectively.

Case (a) By Lemma C.1, we have

1

n

n∑
i=1

Zssiv
i (ξi + µr1,i)− Z̄ssiv 1

n

n∑
i=1

(ξi + µr1,i) = OP
(√
nqpren

)
.

Case (b) By Lemma C.1 and recall (19), we have

1

n

n∑
i=1

Zssiv
i (ξi + µr1,i)− Z̄ssiv 1

n

n∑
i=1

(ξi + µr1,i) =
1

n

n∑
i=1

Zssiv
i µr1,i − Z̄ssiv 1

n

n∑
i=1

µr1,i = OP

(
qpren√
nqpostn

)
.

To conclude,

1

n

n∑
i=1

(Zssiv
i − Z̄ssiv)(Mi − M̄) =

OP

(
min{qpren ,qpost

n }
qpost
n

)
+OP

(
qpren√
nqpost

n

)
if Var(ξi) = 0;

OP

(
min{qpren ,qpost

n }
qpost
n

)
+OP (

√
nqpren ) if Var(ξi) > 0.

C.2 Consistency

Define the matrix

Div
n =


1 0 0

0 1 0

0 0 1
nqpren

 .

The closed form of (Div
n Z

⊤X)−1 is

(
Div

n Z
⊤X
)−1

=
1

det(Div
n Z

⊤X)


b11 b12 b13

b21 b22 b23

b31 b32 b33

 (36)

where

b11 =

(
1

n

n∑
i=1

Ti

)(
1

n2qpren

n∑
i=1

MiZ
ssiv
i

)
−

(
1

n

n∑
i=1

TiMi

)(
1

n2qpren

n∑
i=1

TiZ
ssiv
i

)

b12 = −

(
1

n

n∑
i=1

Ti

)(
1

n2qpren

n∑
i=1

MiZ
ssiv
i

)
+

(
1

n2qpren

n∑
i=1

TiZ
ssiv
i

)(
1

n

n∑
i=1

Mi

)
b13 = a13
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b21 = −

(
1

n

n∑
i=1

Ti

)(
1

n2qpren

n∑
i=1

MiZ
ssiv
i

)
+

(
1

n2qpren

n∑
i=1

Zssiv
i

)(
1

n

n∑
i=1

TiMi

)

b22 =

(
1

n2qpren

n∑
i=1

MiZ
ssiv
i

)
−

(
1

n

n∑
i=1

Mi

)(
1

n2qpren

n∑
i=1

Zssiv
i

)
b23 = a23

b31 =

(
1

n

n∑
i=1

Ti

)(
1

n2qpren

n∑
i=1

TiZ
ssiv
i

)
−

(
1

n

n∑
i=1

Ti

)(
1

n2qpren

n∑
i=1

Zssiv
i

)

b32 = −

(
1

n2qpren

n∑
i=1

TiZ
ssiv
i

)
+

(
1

n2qpren

n∑
i=1

Zssiv
i

)(
1

n

n∑
i=1

Ti

)
b33 = a33

and

det(Z⊤X) = b33b22 − b32b23.

Define b∗22 = E[Zssiv
i (r0,i+r1,i)]

nqpre
n

≍ 1
nmax{qpren ,qpost

n } . Below, we show the probability limit of(
Div

n Z
⊤X
)−1

.

Theorem C.1. Under Assumption 1, then

Case (a):

(
Div

n Z
⊤X
)−1

=

 πb∗22 −πb∗22 a∗13
−πb∗22 b∗22 −Cov(Ti, ξi + µr1,i)

0 0 π(1− π)

+OP

(
1√
n

)
π(1− π)b∗22 +OP

(
1√
n

) ;

Case (b):

(
Div

n Z
⊤X
)−1

=


πb∗22 +OP

(
1√
n

)
−πb∗22 +OP

(
1√
n

)
a∗13 +OP

(
1√
n

)
−πb∗22 +OP

(
1√
n

)
b∗22 +OP

(
1√

nnqpost
n

)
OP

(
1

n
√

qpost
n

)
OP

(
1√
n

)
OP

(
1√

n
√

nqpren

)
π(1− π) +OP

(
1√
n

)


π(1− π)b∗22 +OP

(
1√

nnqpost
n

) .

Proof of Theorem C.1. By Lemma C.1, we can show that

1

n2qpren

n∑
i=1

Zssiv
i =

1

n

n∑
i=1

(Ti − π)E

[
Apre

ij

qpren
| wi

]
+OP

(
1

√
n
√
nqpren

)
= OP

(
1√
n

)
, (37)
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1

n2qpren

n∑
i=1

TiZ
ssiv
i =

1

n

n∑
i=1

(Ti − π)E

[
Apre

ij Tj

qpren
| wi

]
+OP

(
1

√
n
√
nqpren

)
= OP

(
1√
n

)
. (38)

Then we analyze terms in (36) individually.

(1): b11. By Lemma B.1 and Lemma C.2, we have

b11 =

(
1

n

n∑
i=1

Ti

)(
1

n2qn

n∑
i=1

MiZ
ssiv
i

)
−

(
1

n

n∑
i=1

TiMi

)(
1

n2qn

n∑
i=1

TiZ
ssiv
i

)

=

(
π +OP

(
1√
n

))(
b∗22 +OP

(
1√
n

))
−
(
E[Ti(ξi + µr1,i)] +OP

(
1√
n

))
OP

(
1√
n

)
= πb∗22 +OP

(
1√
n

)
.

(2): b12. By Lemma B.1 and Lemma C.2, we have

b12 =

(
1

n2qpren

n∑
i=1

TiZ
ssiv
i

)(
1

n

n∑
i=1

Mi

)
−

(
1

n

n∑
i=1

Ti

)(
1

n2qpren

n∑
i=1

MiZ
ssiv
i

)

=

(
1

n2qpren

n∑
i=1

TiZ
ssiv
i

)(
1

n

n∑
i=1

(ξi + µr1,i)

)
−

(
1

n

n∑
i=1

Ti

)(
1

n2qpren

n∑
i=1

(ξi + µr1,i)Z
ssiv
i

)

+

(
1

n2qpren

n∑
i=1

TiZ
ssiv
i

)(
1

n

n∑
i=1

(r0,i + r1,i − µr1,i)

)
−

(
1

n

n∑
i=1

Ti

)(
1

n2qpren

n∑
i=1

(r0,i + r1,i − µr1,i)Z
ssiv
i

)

=

(
E(ξi + µr1,i) +OP

(
1√
n

))
OP

(
1√
n

)
−
(
π +OP

(
1√
n

))(
b∗22 +OP

(
1√
n

))
= −πb∗22 +OP

(
1√
n

)
.

(3): b13. By (27), we have shown b13 = a∗13 +OP

(
1√
n

)
.

(4): b21. By Lemma B.1 and Lemma C.2, we can show

b21 =−

(
1

n

n∑
i=1

Ti

)(
1

n2qpren

n∑
i=1

MiZ
ssiv
i

)
+

(
1

n2qpren

n∑
i=1

Zssiv
i

)(
1

n

n∑
i=1

TiMi

)

=−

(
1

n

n∑
i=1

Ti

)(
1

n2qpren

n∑
i=1

ξiZ
ssiv
i

)
+

(
1

n2qpren

n∑
i=1

Zssiv
i

)(
1

n

n∑
i=1

Tiξi

)

−

(
1

n

n∑
i=1

Ti

)(
1

n2qpren

n∑
i=1

µr1,iZ
ssiv
i

)
+

(
1

n2qpren

n∑
i=1

Zssiv
i

)(
1

n

n∑
i=1

Tiµr1,i

)

−

(
1

n

n∑
i=1

Ti

)(
1

n2qpren

n∑
i=1

(r0,i + r1,i − µr1,i)Z
ssiv
i

)
+

(
1

n2qpren

n∑
i=1

Zssiv
i

)(
1

n

n∑
i=1

Ti(r0,i + r1,i − µr1,i)

)

=−
(
π +OP

(
1√
n

))(
E [Zssiv

i (r0,i + r1,i − µr1,i)]

nqpren
+OP

(
1√
n

))
+OP

 1

n

√
qpostn

OP

(
1√
n

)
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=− πb∗22 +OP

(
1√
n

)
.

(5): b31. By analogous argument to (38), we can show that

b31 =

(
1

n

n∑
i=1

Ti

)(
1

n2qpren

n∑
i=1

TiZ
ssiv
i

)
−

(
1

n

n∑
i=1

Ti

)(
1

n2qpren

n∑
i=1

Zssiv
i

)

=−

(
1

n

n∑
i=1

Ti

)(
1

n2qpren

n∑
i=1

(1− Ti)Z
ssiv
i

)
= OP

(
1√
n

)
.

(6): b32. By Lemma C.1, we have

b32 =−

(
1

n2qpren

n∑
i=1

TiZ
ssiv
i

)
+

(
1

n2qpren

n∑
i=1

Zssiv
i

)(
1

n

n∑
i=1

Ti

)

=−

(
1

n2qpren

n∑
i=1

(Ti − π)Zssiv
i

)
+

(
1

n2qpren

n∑
i=1

Zssiv
i

)(
1

n

n∑
i=1

(Ti − π)

)

=OP

(
1

√
n
√
nqpren

)
+OP

(
1√
n

)
OP

(
1√
n

)
= OP

(
1

√
n
√
nqpren

)
. (39)

(7): b33. b33 = π(1− π) +OP

(
1√
n

)
.

We consider Cases (a) and (b) for the remaining terms, respectively.

Case (a) (1): b22. By Lemma C.3, we have

b22 = b∗22 +OP

(
1√
n

)
. (40)

(2): b23. By Lemma B.1, we can show

b23 = −Cov(Ti, ξi + µr1,i) +OP

(
1√
n

)
. (41)

(3): det(Z⊤X). By combining (39), (40) and (41), we have

det(Z⊤X) = b33b22 − b32b23

=

(
π(1− π) +OP

(
1√
n

))(
b∗22 +OP

(
1√
n

))
−
(
−Cov(Ti, ξi + µr1,i) +OP

(
1√
n

))
OP

(
1

n
√
qpren

)

= π(1− π)b∗22 +OP

(
1√
n

)
.
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Case (b) (1): b22. By Lemma C.3, we have

b22 = b∗22 +OP

(
1

√
nnqpostn

)
. (42)

(2): b23. By (29), we have shown b23 = OP

(
1

n
√

qpost
n

)
.

(3): det(Z⊤X). By combining (39), (42) and (29), we have

det(Z⊤X) = b33b22 − b32b23

=

(
π(1− π) +OP

(
1√
n

))(
b∗22 +OP

(
1

√
nnqpostn

))
−OP

 1

n

√
qpostn

OP

(
1

n
√
qpren

)

= π(1− π)b∗22 +OP

(
1

√
nnqpostn

)
.

Proof of Theorem 4.1. By direct algebra, the closed form of the IV estimators β̂iv is

β̂iv1 − β1 =
b22

1
n

∑n
i=1(Ti − T̄ )ui + b23

1
n2qpren

∑n
i=1(Z

ssiv
i − Z̄ssiv)ui

b33b22 − b32b23
,

β̂iv2 − β2 =
b33

1
n2qpre

n

∑n
i=1(Z

ssiv
i − Z̄ssiv)ui + b32

1
n

∑n
i=1(Ti − T̄ )ui

b33b22 − b32b23
,

β̂iv0 − β0 =
1

n

n∑
i=1

ui − (β̂iv1 − β1)T̄ − (β̂iv2 − β2)M̄.

By Lemma C.1, we can show that

1

n2qpren

n∑
i=1

Zssiv
i ui =

1

n

n∑
i=1

(Ti − π)E

[
Apre

ij uj

qpren
| wi

]
+OP

(
1

√
n
√
nqpren

)
= OP

(
1√
n

)
. (43)

By combining (37) and (43), we can show that

1

n2qpren

n∑
i=1

(Zssiv
i − Z̄ssiv)ui = OP

(
1√
n

)
.

With i.i.d. data, we also have

1

n

n∑
i=1

ui = OP

(
1√
n

)
and

1

n

n∑
i=1

(Ti − T̄ )ui = OP

(
1√
n

)
.
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Case (a) By Theorem C.1, we can conclude that

β̂iv1 − β1 =
b22

1
n

∑n
i=1(Ti − T̄ )ui + b23

1
n2qpren

∑n
i=1(Z

ssiv
i − Z̄ssiv)ui

b33b22 − b32b23

=

(
b∗22 +OP

(
1√
n

))
OP

(
1√
n

)
+
(
−Cov(Ti, ξi + µr1,i) +OP

(
1√
n

))
OP

(
1√
n

)
π(1− π)b∗22 +OP

(
1√
n

)
=

b∗22OP

(
1√
n

)
+ (−Cov(Ti, ξi + µr1,i))OP

(
1√
n

)
+OP

(
1
n

)
π(1− π)b∗22 +OP

(
1√
n

)
and

β̂iv2 − β2 =
b33

1
n2qpre

n

∑n
i=1(Z

ssiv
i − Z̄ssiv)ui + b32

1
n

∑n
i=1(Ti − T̄ )ui

b33b22 − b32b23

=

(
π(1− π) +OP

(
1√
n

))
OP

(
1√
n

)
+OP

(
1√

n
√

nqpren

)
OP

(
1√
n

)
π(1− π)b∗22 +OP

(
1√
n

)
=

π(1− π)OP

(
1√
n

)
+OP

(
1
n

)
π(1− π)b∗22 +OP

(
1√
n

) .

Recall b∗22 ≍ 1
nmax{qpre

n ,qpost
n } . Therefore, β̂

iv
1 and β̂iv2 are consistent when max{qpren , qpostn } ≺ 1√

n
with

β̂iv1 − β1 = OP
(√
nmax{qpren , qpostn }

)
and β̂iv2 − β2 = OP

(√
nmax{qpren , qpostn }

)
.

The consistency of β̂iv0 follows when max{qpren , qpostn } ≺ 1√
n
with

β̂iv0 − β0 = OP
(√
nmax{qpren , qpostn }

)
.

Case (b): By Theorem C.1, for β̂iv1 − β1, we have

β̂iv1 − β1 =
b22

1
n

∑n
i=1(Ti − T̄ )ui + b23

1
n2qpren

∑n
i=1(Z

ssiv
i − Z̄ssiv)ui

b33b22 − b32b23

=

(
b∗22 +OP

(
1√

nnqpost
n

))
OP

(
1√
n

)
+OP

(
1

n
√

qpost
n

)
OP

(
1√
n

)
π(1− π)b∗22 +OP

(
1√

nnqpost
n

)

=

b∗22OP

(
1√
n

)
+OP

(
1

n
√

qpost
n

)
OP

(
1√
n

)
π(1− π)b∗22 +OP

(
1√

nnqpost
n

) .
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Therefore, β̂iv1 is consistent when max{qpren , qpostn } ≺
√
nqpostn with

β̂iv1 − β1 = OP

 1√
n
max

max{qpren , qpostn }√
qpostn

, 1


 .

For β̂iv2 − β2, we have

β̂iv2 − β2 =
b33

1
n2qpre

n

∑n
i=1(Z

ssiv
i − Z̄ssiv)ui + b32

1
n

∑n
i=1(Ti − T̄ )ui

b33b22 − b32b23

=

(
π(1− π) +OP

(
1√
n

))
OP

(
1√
n

)
+OP

(
1√

n
√

nqpren

)
OP

(
1√
n

)
π(1− π)b∗22 +OP

(
1√

nnqpost
n

)
=

π(1− π)OP

(
1√
n

)
+OP

(
1
n

)
π(1− π)b∗22 +OP

(
1√

nnqpost
n

) .
Therefore, β̂iv2 is consistent when max{qpren , qpostn } ≺ n−1/2, with estimation error

β̂iv2 − β2 = OP
(√
nmax{qpren , qpostn }

)
.

The consistency of β̂iv0 follows when max{qpren , qpostn } ≺ n−1/2 with

β̂iv0 − β0 = OP
(√
nmax{qpren , qpostn }

)
.

Proof of Corollary 4.1. Corollary 4.1 is a direct result of Theorem 4.1 under qpren ≼ qpostn .

C.3 Asymptotic normality

Below we prove the asymptotic distribution when the estimators are consistent.

Proof of Theorem 4.2. We complete the proof in three steps.

Step 1: asymptotic normality. We prove the asymptotic normality of the numerator:

Div
n

1

n

n∑
i=1

Ziui =
1

n

n∑
i=1

 ui

Tiui

Zssiv
i ui/(nq

pre
n )

 .

Analogous to Theorem 3.2, we divide the proof into two cases.
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Case 1: nqpren ≻ 1. By (43), we have shown that

1

n2qpren

n∑
i=1

Zssiv
i ui =

1

n

n∑
i=1

(Ti − π)E

[
Apre

ij uj

qpren
| wi

]
+OP

(
1

√
n
√
nqpren

)
,

which can be approximated by the average of i.i.d. random variable with a small error oP

(
1√
n

)
. Then

the asymptotic normality of Div
n

1
n

∑n
i=1 Ziui follows from standard argument using Cramer–Wold

theorem and Lindeberg–Lévy CLT.

Case 2: nqpren ≍ 1. It suffices to verify the assumptions in Theorem B.2. Assumption (a) follows

from V iv
num = O(n). Assumption (b) follows from Lemma B.1. Assumption (c) follows from applying

Lemma B.4 to Apre with nqpren ≍ 1. Then by Theorem B.2 and Cramer–Wold device, we can show

(V iv
num)

−1/2

(
n∑

i=1

Ziui

)
d→ N (0, I3) .

Step 2: consistent variance estimator. We show that

Div
n

(
V̂ iv
num − V iv

num

)
Div

n = oP(1).

Recall that ûivi = ui− (β̂iv−β)⊤Xi. We show the consistency of the variance estimators one by one.

(1): The consistency of (1, 1)th element of V̂ iv
num. By expanding the square,

1

n

n∑
i=1

(ûivi )
2 =

1

n

n∑
i=1

u2i −
2

n

n∑
i=1

ui(β̂
iv − β)⊤Xi +

1

n

n∑
i=1

(
(β̂iv − β)⊤Xi

)2
.

First, by LLN, we have 1
n

∑n
i=1 u

2
i = E(u2i ) + oP(1). Second, with β̂

iv − β = oP(1), we have

1

n

n∑
i=1

ui(β̂
iv − β)⊤Xi =(β̂iv0 − β0)

1

n

n∑
i=1

ui + (β̂iv1 − β1)
1

n

n∑
i=1

Tiui + (β̂iv2 − β2)
1

n

n∑
i=1

Miui = oP(1).

Third,

1

n

n∑
i=1

(
(β̂iv − β)⊤Xi

)2
=
1

n

n∑
i=1

(
(β̂iv0 − β0) + (β̂iv1 − β1)Ti + (β̂iv2 − β2)Mi

)2
≤3

[
(β̂iv0 − β0)

2 + (β̂iv1 − β1)
2 1

n

n∑
i=1

Ti + (β̂iv2 − β2)
2 1

n

n∑
i=1

M2
i

]
= oP(1),

where the last equality follows from the bounded support of Ti and Mi, and β̂iv − β = oP(1).

Therefore, it implies that

1

n

n∑
i=1

(ûivi )
2 =

1

n

n∑
i=1

u2i + oP(1) = E(u2i ) + oP(1).
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(2): The consistency of (3, 3)th element of V̂ iv
num. By definition,

1

n

n∑
j=1

∑
i ̸=j

Apre
ij û

iv
i

2

=
1

n

n∑
j=1

∑
i ̸=j

Apre
ij

(
ui − (β̂iv − β)⊤Xi

)2

=
1

n

n∑
j=1

∑
i ̸=j

Apre
ij ui

2

− 2

n

n∑
j=1

∑
i ̸=j

Apre
ij ui

∑
i ̸=j

Apre
ij (β̂iv − β)⊤Xi

+
1

n

n∑
j=1

∑
i ̸=j

Apre
ij (β̂iv − β)⊤Xi

2

.

(44)

For the first term of (44), the expectation is

E

 1

n

n∑
j=1

∑
i ̸=j

Apre
ij ui

2 = E

 1

n

n∑
j=1

∑
i ̸=j

Apre
ij u

2
i +

∑
(i,k)

Apre
ij A

pre
kj uiuk

 ≍ (nqpren )2. (45)

The variance is

Var

 1

n

n∑
j=1

∑
i ̸=j

Apre
ij ui

2 = Var

 1

n

n∑
j=1

∑
i ̸=j

Apre
ij u

2
i +

∑
(i,k)

Apre
ij A

pre
kj uiuk


=Var

 1

n

n∑
j=1

∑
i ̸=j

Apre
ij u

2
i

+Var

 1

n

n∑
j=1

∑
(i,k)

Apre
ij A

pre
kj uiuk


+ 2Cov

 1

n

n∑
j=1

∑
i ̸=j

Apre
ij u

2
i

 ,
1

n

n∑
j=1

∑
(i,k)

Apre
ij A

pre
kj uiuk


=

1

n2

n∑
j=1

∑
i ̸=j

Var
(
Apre

ij u
2
i

)
+

1

n2

n∑
j=1

∑
(i,k)

Cov
(
Apre

ij u
2
i , A

pre
kj u

2
k

)
+

1

n2

∑
(j,k)

Cov

∑
i ̸=j

Apre
ij u

2
i ,
∑
l ̸=k

Apre
lk u

2
l


+

1

n2

n∑
j=1

∑
(i,k)

Var
(
Apre

ij A
pre
kj uiuk

)
+

1

n2

n∑
j=1

∑
(i,k)̸=(h,m)

Cov
(
Apre

ij A
pre
kj uiuk, A

pre
hj A

pre
mjuhum

)

+
1

n2

∑
(j1,j2)

Cov

∑
(i,k)

Apre
ij1
Apre

kj1
uiuk,

∑
(i,k)

Apre
ij2
Apre

kj2
uiuk

+ 2
1

n2
Cov

 n∑
j=1

∑
i ̸=j

Apre
ij u

2
i ,

n∑
j=1

∑
(i,k)

Apre
ij A

pre
kj uiuk


=

1

n2

n∑
j=1

∑
i ̸=j

Var
(
Apre

ij u
2
i

)
+

1

n2

n∑
j=1

∑
(i,k)

Cov
(
Apre

ij u
2
i , A

pre
kj u

2
k

)
+

1

n2

∑
(j,k)

∑
i ̸=j,k

Cov
(
Apre

ij u
2
i , A

pre
ik u

2
i

)

+
1

n2

n∑
j=1

∑
(i,k)

Var
(
Apre

ij A
pre
kj uiuk

)
+

1

n2

n∑
j=1

∑
(i,k)̸=(h,m)

Cov
(
Apre

ij A
pre
kj uiuk, A

pre
hj A

pre
mjuhum

)
+

1

n2

∑
(j1,j2)

∑
(i1,i2,k)

Cov
(
Apre

i1j1
Apre

kj1
uiuk, A

pre
i2j2

Apre
kj2
uiuk

)
+ 2

1

n2

∑
(i,j,k,l)

Cov
(
Apre

ij u
2
i , A

pre
il A

pre
kl uiuk

)
≍n3 (qpren )4 .
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Therefore,

1

n(nqpren )2

n∑
j=1

∑
i ̸=j

Apre
ij ui

2

= E

 1

n(nqpren )2

n∑
j=1

∑
i ̸=j

Apre
ij ui

2+OP

(
1√
n

)
. (46)

For the second term of (44),

1

n

n∑
j=1

∑
i ̸=j

Apre
ij ui

∑
i ̸=j

Apre
ij (β̂iv − β)⊤Xi


=(β̂iv0 − β0)

1

n

n∑
j=1

∑
i ̸=j

Apre
ij ui

∑
i ̸=j

Apre
ij

+ (β̂iv1 − β1)
1

n

n∑
j=1

∑
i ̸=j

Apre
ij ui

∑
i ̸=j

Apre
ij Ti


+ (β̂iv2 − β2)

1

n

n∑
j=1

∑
i ̸=j

Apre
ij ui

∑
i ̸=j

Apre
ij Mi


≤|β̂iv0 − β0|

1

n

n∑
j=1

∑
i ̸=j

Apre
ij ui

2

+

∑
i ̸=j

Apre
ij

2+ |β̂iv1 − β1|
1

n

n∑
j=1

∑
i ̸=j

Apre
ij ui

2

+

∑
i ̸=j

Apre
ij Ti

2
+ |β̂iv2 − β2|

1

n

n∑
j=1

∑
i ̸=j

Apre
ij ui

2

+

∑
i ̸=j

Apre
ij Mi

2 .
By analogous arguments to (45), we can show that

1

n

n∑
j=1

∑
i ̸=j

Apre
ij

2

= OP
(
(nqpren )2

)
and

1

n

n∑
j=1

∑
i ̸=j

Apre
ij Ti

2

= OP
(
(nqpren )2

)
(47)

by bounding them in L1 norm. Also, by the bounded support of Mi, we have

E

 1

n

n∑
j=1

∑
i ̸=j

Apre
ij Mi

2 ≤ E

 1

n

n∑
j=1

∑
i ̸=j

Apre
ij

2 ≤ C(nqpren )2,

which implies that

1

n

n∑
j=1

∑
i ̸=j

Apre
ij Mi

2

=OP
(
(nqpren )2

)
. (48)

With consistent estimators that β̂iv − β = oP(1), we can show that

1

n(nqpren )2

n∑
j=1

∑
i ̸=j

Apre
ij ui

∑
i ̸=j

Apre
ij (β̂iv − β)⊤Xi

 = oP(1). (49)
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For the third term of (44),

1

3

1

n

n∑
j=1

∑
i ̸=j

Apre
ij (β̂iv − β)⊤Xi

2

≤ (β̂iv0 − β0)
2 1

n

n∑
j=1

∑
i ̸=j

Apre
ij

2

+(β̂iv1 − β1)
2 1

n

n∑
j=1

∑
i ̸=j

Apre
ij Ti

2

+ (β̂iv2 − β2)
2 1

n

n∑
j=1

∑
i ̸=j

Apre
ij Mi

2

.

Together with (47), (48) and β̂iv − β = oP(1), we have

1

n(nqpren )2

n∑
j=1

∑
i ̸=j

Apre
ij (β̂iv − β)⊤Xi

2

= OP(1)oP(1) = oP(1). (50)

Thus, (46), (49) and (50) together imply that

1

n(nqpren )2

n∑
j=1

∑
i ̸=j

Apre
ij û

iv
i

2

=
1

n(nqpren )2

n∑
j=1

E

∑
i ̸=j

Apre
ij ui

2+ oP(1).

(3): The consistency of (2, 3) element of V̂ iv
num. By decomposition,

1

n

n∑
i=1

∑
j ̸=i

Apre
ij û

iv
i û

iv
j =

1

n

n∑
i=1

∑
j ̸=i

Apre
ij

(
ui − (β̂iv − β)⊤Xi

)(
uj − (β̂iv − β)⊤Xj

)
=

1

n

n∑
i=1

∑
j ̸=i

Apre
ij uiuj −

2

n

n∑
i=1

∑
j ̸=i

Apre
ij ui(β̂

iv − β)⊤Xj +
1

n

n∑
i=1

∑
j ̸=i

Apre
ij (β̂iv − β)⊤Xi(β̂

iv − β)⊤Xj .

(51)

For the first term of (51), the expectation is

E

 1

n

n∑
i=1

∑
j ̸=i

Apre
ij uiuj

 = O (nqpren ) ,

and the variance is

Var

 1

n

n∑
i=1

∑
j ̸=i

Apre
ij uiuj

 =
1

n2

n∑
i=1

Var

∑
j ̸=i

Apre
ij uiuj

+
1

n2

∑
(i,k)

Cov

∑
j ̸=i

Apre
ij uiuj ,

∑
j ̸=k

Apre
kj ukuj


=

1

n2

n∑
i=1

∑
j ̸=i

Var
(
Apre

ij uiuj

)
+

1

n2

n∑
i=1

∑
(j,k)

Cov
(
Apre

ij uiuj , A
pre
ik uiuk

)
+

1

n2

∑
(i,k)

∑
j ̸=i,k

Cov
(
Apre

ij uiuj , A
pre
kj ukuj

)
+

1

n2

∑
(i,j) ̸=(k,l)

Cov
(
Apre

ij uiuj , A
pre
kl ukul

)
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=
1

n2

n∑
i=1

∑
j ̸=i

Var
(
Apre

ij uiuj

)
+

1

n2

n∑
i=1

∑
(j,k)

Cov
(
Apre

ij uiuj , A
pre
ik uiuk

)
+

1

n2

∑
(i,k)

∑
j ̸=i,k

Cov
(
Apre

ij uiuj , A
pre
kj ukuj

)
≤ C1q

pre
n + C2(nq

pre
n )qpren = O

(
n(qpren )2

)
.

Therefore,

1

n2qpren

n∑
i=1

∑
j ̸=i

Apre
ij uiuj =

1

n2qpren

n∑
i=1

∑
j ̸=i

E
[
Apre

ij uiuj

]
+OP

(
1√
n

)
. (52)

For the second term of (51),

1

n

n∑
i=1

∑
j ̸=i

Apre
ij ui(β̂

iv − β)⊤Xj

= (β̂iv0 − β0)
1

n

n∑
i=1

∑
j ̸=i

Apre
ij ui + (β̂iv1 − β1)

1

n

n∑
i=1

∑
j ̸=i

uiA
pre
ij Tj + (β̂iv2 − β2)

1

n

n∑
i=1

∑
j ̸=i

uiA
pre
ij Mj .

It suffices to show that 1
n

∑n
i=1

∑
j ̸=iA

pre
ij uiXj = OP(nq

pre
n ). We bound these terms in L2 norm.

First,

E

 1

n

n∑
i=1

∑
j ̸=i

Apre
ij ui

2 =
1

n2

n∑
i=1

E

∑
j ̸=i

Apre
ij ui

2+
1

n2

∑
(i,j)

E

∑
k ̸=i

Apre
ik ui

∑
k ̸=j

Apre
jk uj


=

1

n2

n∑
i=1

E

∑
j ̸=i

Apre
ij u

2
i +

∑
(j1,j2)

Apre
ij1
Apre

ij2
u2i

+
1

n2

∑
(i,j)

E

∑
k1 ̸=i

∑
k2 ̸=j

Apre
ik1
uiA

pre
jk2
uj


≤ C1q

pre
n + C2n(q

pre
n )2 + C3(nq

pre
n )2,

which implies that

1

n

n∑
i=1

∑
j ̸=i

Apre
ij ui = OP (nq

pre
n ) .

Second,

E

 1

n

n∑
i=1

∑
j ̸=i

Apre
ij uiMj

2 =
1

n2

n∑
i=1

E

∑
j ̸=i

Apre
ij uiMj

2+
1

n2

∑
(i,j)

E

∑
k ̸=i

Apre
ik uiMk

∑
k ̸=j

Apre
jk ujMk


=

1

n2

n∑
i=1

E

∑
j ̸=i

Apre
ij u

2
iM

2
j +

∑
(j1,j2)

Apre
ij1
Apre

ij2
u2iMj1Mj2

+
1

n2

∑
(i,j)

E

∑
k1 ̸=i

∑
k2 ̸=j

Apre
ik1
uiMk1

Apre
jk2
ujMk2


≤ 1

n2

n∑
i=1

E

∑
j ̸=i

Apre
ij u

2
i +

∑
(j1,j2)

Apre
ij1
Apre

ij2
u2i

+
1

2

1

n2

∑
(i,j)

E

∑
k1 ̸=i

∑
k2 ̸=j

Apre
ik1
Mk1

Apre
jk2
Mk2

(u2i + u2j )
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≤ C1q
pre
n + C2(nq

pre
n )qpren + C3(nq

pre
n )2,

which implies that

1

n

n∑
i=1

∑
j ̸=i

Apre
ij uiMj = OP (nq

pre
n ) .

By analogous argument, we can show that

1

n

n∑
i=1

∑
j ̸=i

Apre
ij uiTj = OP (nq

pre
n ) .

In particular, this implies that with consistent estimates, we have

1

n2qpren

n∑
i=1

∑
j ̸=i

Apre
ij ui(β̂

iv − β)⊤Xj = oP(1). (53)

For the last term of (52), it is bounded above by

1

n

n∑
i=1

∑
j ̸=i

Apre
ij

(
(β̂iv − β)⊤Xi

)(
(β̂iv − β)⊤Xj

)
≤C 1

n

n∑
i=1

∑
j ̸=i

Apre
ij

[
(β̂iv0 − β0)

2 + (β̂iv1 − β1)
2Ti + (β̂iv2 − β2)

2M2
i

]
(54)

by symmetric. We bound each term in L1 norm:

E

 1

n

n∑
i=1

∑
j ̸=i

Apre
ij

 = O (nqpren ) and E

 1

n

n∑
i=1

∑
j ̸=i

Apre
ij Ti

 = O (nqpren ) .

Also, by the boundedness of Mi, we have

E

 1

n

n∑
i=1

∑
j ̸=i

Apre
ij M

2
i

 ≤ E

 1

n

n∑
i=1

∑
j ̸=i

Apre
ij

 = O (nqpren ) .

Therefore,

1

n

n∑
i=1

∑
j ̸=i

Apre
ij

(
(β̂iv − β)⊤Xi

)(
(β̂iv − β)⊤Xj

)
= OP (nq

pre
n ) . (55)

Thus, (52), (53) and (55) together imply that with consistent estimators, we have

1

n2qpren

n∑
i=1

∑
j ̸=i

Apre
ij û

iv
i û

iv
j =

1

n2qpren

n∑
i=1

∑
j ̸=i

E
[
Apre

ij uiuj

]
+ oP(1).
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Step 3 Steps 1–2 and CMT together imply the desired result:

(
V̂ iv
num

)−1/2
(

n∑
i=1

Ziui

)
d→ N (0, I3).

By Theorem C.1, we have shown the probability limit of Z⊤X. By CMT again, we can show

(
V̂ iv
)−1/2 (

β̂iv − β
)

d→ N (0, I3).

D Proof of results in Section 4.2

D.1 Useful lemmas

By eigenvalue decomposition, we have qpren Gpre
n =

∑n
k=1 λ

∗
kψ

∗⊤
k ψ∗

k. In Assumption 4, we assume

that the graphon is approximately low rank, i.e., can be approximated by the r leading terms

qpren G̃pre
n =

∑r
k=1 λ

∗
kψ

∗⊤
k ψ∗

k. We show that eigenvectors of Apre, (ψ̂k)
n
k=1, is close to (ψ∗

k)
n
k=1.

Lemma D.1. Suppose qn ≻ logn
log logn/n. Under Assumptions 1 and 4, we have

(1) ∥Apre − qpren Gpre
n ∥op = OP

(√
nqpren

(
logn

log logn

)1/4)
;

(2)
∥∥∥Apre − qpren G̃pre

n

∥∥∥
op

= OP

(√
nqpren

(
logn

log logn

)1/4)
.

Proof of Lemma D.1. We first show result (1). This is analogous to Lemma 25 in Li and Wager

(2022). Suppose qpren ≽ log(n)/n. By Theorem 5.2 in Lei and Rinaldo (2015) with d = nqpren , there

exists some constant C such that ∥Apre − qpren Gpre
n ∥op ≤ C

√
nqpren with probability approaching to

1. Suppose instead logn
log logn/n ≺ qpren ≺ log(n)/n. By Corollary 3.3 in Benaych-Georges et al. (2020),

we can show that by setting their

ε2 =

√
log n

log logn
/(nqpren ),

we have that with probability approaching to 1,

∥Apre − qpren Gpre
n ∥op ≤ k

√
nqpren

(
log n

log log n

)1/4

,

where k is a universal constant. For result (2), by triangle inequality, we have∥∥∥Apre − qpren G̃pre
n

∥∥∥
op

≤ ∥Apre − qpren Gpre
n ∥op + qpren

∥∥∥Gpre
n − G̃pre

n

∥∥∥
op
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= ∥Apre − qpren Gpre
n ∥op +

∥∥∥∥∥
n∑

k=r+1

λ∗kψ
∗⊤
k ψ∗

k

∥∥∥∥∥
op

= OP

(√
nqpren

(
log n

log log n

)1/4
)
.

Lemma D.2. Suppose qpren ≻ logn
log logn/n. Under Assumptions 1 and 4, for k ∈ {1, · · · , r}, then

(1)
∣∣∣λ̂k − λ∗k

∣∣∣ = OP

(√
nqpren

(
logn

log logn

)1/4)
;

(2) λ̂k = ΩP (nq
pre
n ).

Proof of Lemma D.2. This is analogous to Lemma 27 in Li and Wager (2022). For (1), by Weyl’s

Inequality, ∣∣∣λ̂k − λ∗k

∣∣∣ ≤ ∥Apre − qpren Gpre
n ∥op = OP

(√
nqpren

(
log n

log logn

)1/4
)

by Lemma D.1. The result (2) follows from (1) and Assumption 4(a).

Below we recall the statement of the Davis–Kahan theorem as given in Yu et al. (2015).

Lemma D.3 (Theorem 2 in Yu et al. (2015)). Let Σ and Σ̂ ∈ Rp×p be symmetric, with eigen-

values λ1 ≥ . . . ≥ λp and λ̂1 ≥ . . . ≥ λ̂p, respectively. Fix 1 ≤ t ≤ s ≤ p and assume that

min (λt−1 − λt, λs − λs+1) > 0 where we define λ0 = ∞ and λp+1 = −∞. Let d = s− t+ 1, and let

V = (vt, vt+1, . . . , vs) ∈ Rp×d and V̂ = (v̂t, v̂t+1, . . . , v̂s) ∈ Rp×d have orthonormal columns satisfying

Σvj = λjvj and Σ̂v̂j = λ̂j v̂j for j = t, t+ 1, . . . , s. Then there exists an orthogonal matrix Ô ∈ Rd×d

such that

∥V̂ Ô − V ∥f ≤
23/2min

(
d1/2∥Σ̂− Σ∥op, ∥Σ̂− Σ∥f

)
min (λt−1 − λt, λs − λs+1)

. (56)

Specifically, let V̂ ⊤V = O1DO
⊤
2 be the singular value decomposition of V̂ ⊤V , then Ô is

constructed by taking Ô = O1O
⊤
2 .

Lemma D.4. Suppose qpren ≻ logn
log logn/n. Let ψ

∗
k denote the vector of ψ∗

k(wi). There exists an r × r

orthogonal matrix R̂, where r is defined in Assumption 4, such that if we write Ψ̂R = Ψ̂R̂, and let

ψ̂R
k be the k-th column of Ψ̂R for k ≤ r, then under Assumptions 1 and 4, we have

(ψ∗
l )

⊤
(
ψ̂R
k − ψ∗

k

)
=OP

(√
log n

log log n
/(nqpren )

)
, for l = 1, · · · , n (57)

Proof of Lemma D.4. We largely follow the proof of Lemma 8 in Li and Wager (2022). By applying

(56) to Ψ̂ and Ψ∗, and together with Lemma D.1 and Lemma D.3, we get that there exists an r × r

orthogonal matrix R̂ such that

∥∥∥Ψ̂R̂−Ψ∗
∥∥∥
f
= OP

(
1√
nqpren

(
log n

log log n

)1/4
)
. (58)
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Define Ψ̂R = Ψ̂R̂. Let ψ̂R
k be the k-th column of Ψ̂R and ψ∗

k be the k-th column of Ψ∗. Then we

have

∥∥∥ψ̂R
k − ψ∗

k

∥∥∥ = OP

(
1√
nqpren

(
log n

log logn

)1/4
)
. (59)

For l ≤ r, we will show that
∥∥∥(Ψ∗)⊤

(
Ψ̂R −Ψ∗

)∥∥∥
f
is small. Note that the construction of Ô in (56)

ensures that (V̂ Ô)⊤V is symmetric, i.e., (V̂ Ô)⊤V = O2O
⊤
1 O1DO

⊤
2 = O2DO

⊤
2 . This implies that(

Ψ̂R
)⊤

Ψ∗ is symmetric. By definition,

∥V̂ Ô − V ∥2f = tr
(
Ô⊤V̂ ⊤V̂ Ô − (V̂ Ô)⊤V − V ⊤V̂ Ô + V ⊤V

)
= 2 tr(Ir −D).

If we write
(
Ψ̂R
)⊤

Ψ∗ = OΨDΨO
⊤
Ψ, then by (58), we have

∥∥∥Ψ̂R̂−Ψ∗
∥∥∥2
f
= tr (Ir −DΨ) = OP

(
1

nqpren

√
log n

log log n

)
.

Note that

(Ψ∗)⊤
(
Ψ̂R −Ψ∗

)
= (Ψ∗)⊤ Ψ̂R − Ir =

(
OΨDΨO

⊤
Ψ − Ir

)
.

Therefore,

∥∥∥(Ψ∗)⊤
(
Ψ̂R −Ψ∗

)∥∥∥2
f
= tr

((
OΨDΨO

⊤
Ψ − Ir

)2)
= tr

(
(DΨ − Ir)

2
)
= OP

(√ log n

log log n
/(nqpren )

)2
 .

It implies that for any k, l ∈ {1, . . . , r}, we have

(ψ∗
l )

⊤
(
ψ̂R
k − ψ∗

k

)
= OP

(
1

nqpren

√
log n

log log n

)
.

For l > r, we have (ψ∗
l )

⊤
(
Ψ̂R −Ψ∗

)
= (ψ∗

l )
⊤ Ψ̂R by orthogonality. Note that

∥∥∥(ψ∗
l )

⊤ Ψ̂R
r

∥∥∥ =
∥∥∥(ψ∗

l )
⊤ Ψ̂rR̂

∥∥∥ =
∥∥∥(ψ∗

l )
⊤ Ψ̂rΛ̂rR̂R̂

⊤Λ̂−1
r R̂

∥∥∥
where Λ̂r is the r × r diagonal matrix with λ̂1, . . . , λ̂r on its diagonal. We complete the proof by

bounding
∥∥∥(ψ∗

l )
⊤ Ψ̂rΛ̂rR̂

∥∥∥. Note that

(ψ∗
l )

⊤ Ψ̂rΛ̂rR̂ =(ψ∗
l )

⊤ApreΨ̂R̂ = (ψ∗
l )

⊤ApreΨ̂R
r

=(ψ∗
l )

⊤
(
Apre − qpren G̃pre

n

)
Ψ̂R

r + (ψ∗
l )

⊤ qpren G̃pre
n Ψ̂R

r
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=(ψ∗
l )

⊤
(
Apre − qpren G̃pre

n

)
(Ψ̂R

r −Ψ∗
r) + (ψ∗

l )
⊤
(
Apre − qpren G̃pre

n

)
Ψ∗

r .

The first term can be easily bounded by∥∥∥(ψ∗
l )

⊤
(
Apre − qpren G̃pre

n

)(
Ψ̂R

r −Ψ∗
r

)∥∥∥ ≤ ∥ψ∗
l ∥
∥∥∥Apre − qpren G̃pre

n

∥∥∥
op

∥∥∥Ψ̂R
r −Ψ∗

r

∥∥∥
= OP

(√
log n

log log n

)
, (60)

where the last inequality follows from Lemma D.1 and (58). For the second term, we rewrite it in

the summation form:

(ψ∗
l )

⊤
(
Apre − qpren G̃pre

n

)
ψ∗
k =(ψ∗

l )
⊤ (Apre − qpren Gpre

n )ψ∗
k + (ψ∗

l )
⊤

(
n∑

h=r+1

λ∗hψ
∗⊤
h ψ∗

h

)
ψ∗
k

=
∑

(i,j),i ̸=j

ψ∗
liψ

∗
kj

(
Apre

ij − qpren gpre(wi, wj)
)
.

As Apre
ij ’s are independent given w, we have

E

 ∑
(i,j),i ̸=j

ψ∗
liψ

∗
kj

(
Apre

ij − qpren g0(i, j)
)2

=2
∑

(i,j),i ̸=j

E
[
(ψ∗

li)
2 (ψ∗

kj

)2 (
Apre

ij − qpren g0(i, j)
)2]

≤ 2
∑

(i,j),i ̸=j

E
[
(ψ∗

li)
2 (ψ∗

kj

)2
qpren g0(i, j)

]

≤2qpren E

 ∑
(i,j),i ̸=j

(ψ∗
li)

2 (ψ∗
kj

)2 ≤ Cqpren . (61)

Combining (60) and (61), we can show that
∥∥∥(ψ∗

l )
⊤ Ψ̂rΛ̂rR̂

∥∥∥ = OP

(√
logn

log logn

)
. Lemma D.2 shows

that λ̂k = ΩP (nq
pre
n ) for k ≤ r. Thus

∥∥∥(ψ∗
l )

⊤ Ψ̂R
r

∥∥∥ =
∥∥∥(ψ∗

l )
⊤ Ψ̂rR̂

∥∥∥ =
∥∥∥(ψ∗

l )
⊤ Ψ̂rΛ̂rR̂R̂

⊤Λ̂−1
r R̂

∥∥∥ = OP

(√
log n

log log n
/(nqpren )

)
.

It implies that for any k ∈ {1, . . . , r} and l > r, we have

(ψ∗
l )

⊤
(
ψ̂R
k − ψ∗

k

)
= OP

(√
log n

log log n
/(nqpren )

)
. (62)
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Lemma D.5. Suppose qpren ≻ logn
log logn/n. Define ψ̂R

k as in Lemma D.4. Under Assumptions 1 and 4,

∥∥∥Apre
(
ψ̂R
k − ψ∗

k

)∥∥∥ = OP

(√
log n

log logn

)
.

Proof of Lemma D.5. By decomposing the target expression:∥∥∥Apre
(
ψ̂R
k − ψ∗

k

)∥∥∥ ≤
∥∥∥qpren G̃pre

n

(
ψ̂R
k − ψ∗

k

)∥∥∥+ ∥∥∥(Apre − qpren G̃pre
n

)(
ψ̂R
k − ψ∗

k

)∥∥∥
≤

∥∥∥∥∥
r∑

l=1

λ∗l ψ
∗
l ψ

∗⊤
l

(
ψ̂R
k − ψ∗

k

)∥∥∥∥∥+ ∥∥∥Apre − qpren G̃pre
n

∥∥∥
op

∥∥∥ψ̂R
k − ψ∗

k

∥∥∥
= OP

(√
log n

log logn

)

by Lemma D.4, Lemma D.1 and (59).

Lemma D.6. Suppose qpren ≻ logn
log logn/n. Define R̂ and Ψ̂R as in Lemma D.4 and γ̂R = R̂⊤γ̂. Under

Assumptions 1 and 4, we have

r∑
k=1

γ̂kψ̂ki =

r∑
k=1

γ̂Rk ψ̂
R
ki and γ̂

R
k = OP (nq

pre
n ) .

Proof of Lemma D.6. We follow the proof of Lemma 29 in Li and Wager (2022). The first result

holds by construction. Recall the closed form of γ̂k:

γ̂k = −
∑n

i=1 ψ̂kiZ
ssiv
i∑n

i=1 ψ̂
2
ki

= −
n∑

i=1

ψ̂kiZ
ssiv
i .

Multiply R̂ on both hand side, we can obtain

γ̂Rk = −
n∑

i=1

ψ̂R
kiZ

ssiv
i = −

n∑
i=1

ψ∗
k(wi)Z

ssiv
i −

n∑
i=1

(
ψ̂R
ki − ψ∗

k(wi)
)
Zssiv
i .

For the first term of γ̂Rk , we bound it in L2 norm:

E

( n∑
i=1

ψ∗
k(wi)Z

ssiv
i

)2
 = E

 ∑
(i,j),i ̸=j

ψ∗
k(wi)A

pre
ij (Tj − π)

2
= E

 n∑
j=1

(Tj − π)2

 n∑
i=1

ψ∗
k(wi)

2Apre
ij +

∑
(i1,i2)

ψ∗
k(wi1)ψ

∗
k(wi2)A

pre
i1j
Apre

i2j


= E

 n∑
j=1

(Tj − π)2

 n∑
i=1

ψ∗
k(wi)

2qpren g0(i, j) +
∑
(i1,i2)

ψ∗
k(wi1)ψ

∗
k(wi2)q

pre
n g0(i1, j)q

pre
n g0(i2, j)
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= E

 n∑
j=1

(Tj − π)2

 n∑
i=1

ψ∗
k(wi)

2qpren g0(i, j) +
∑
(i1,i2)

ψ∗
k(wi1)ψ

∗
k(wi2)λ

∗
kψ

∗
k(wi1)ψ

∗
k(wj)λ

∗
kψ

∗
k(wi2)ψ

∗
k(wj)


= π(1− π)

∑
(i,j),i ̸=j

E
[
ψ∗
k(wi)

2qpren g0(i, j)
]
+ π(1− π) (λ∗k)

2

≤ C1nq
pre
n + C2(nq

pre
n )2.

This implies that
n∑

i=1

ψ∗
k(wi)Z

ssiv
i = OP (nq

pre
n ) . (63)

For the second term of γ̂k, we bound it in L2 norm:

E

 n∑
j=1

(Tj − π)
∑
i ̸=j

Apre
ij

(
ψ̂R
ki − ψ∗

k(wi)
)2

=π(1− π)E

 n∑
j=1

∑
i ̸=j

Apre
ij

(
ψ̂R
ki − ψ∗

k(wi)
)2 = π(1− π)E

[∥∥∥Apre
(
ψ̂R
k − ψ∗

k(w)
)∥∥∥2]

=OP

(
log n

log logn

)
by Lemma D.5. Therefore,

n∑
i=1

(
ψ̂R
ki − ψ∗

k(wi)
)
Zssiv
i = OP

(√
log n

log logn

)
. (64)

Combining (63) and (64), we get γ̂Rk = OP (nq
pre
n ).

Define ϕi as any i.i.d. random variable with constant variance. Define µϕn,k =
∑n

i=1 ϕiψ
∗
k(wi)

and ηϕi = ϕi −
∑r

k=1 µ
ϕ
n,kψ

∗
k(wi). By definition, we have

n∑
i=1

ηϕi ψ
∗
k(wi) =

n∑
i=1

(
ϕi −

r∑
l=1

µϕn,lψ
∗
l (wi)

)
ψ∗
k(wi) = 0.

Also, µϕn,l = OP(
√
n) which follows by

E
(
(µϕn,l)

2
)
=E

( n∑
i=1

ϕiψ
∗
li

)2
 =

n∑
i=1

E
(
ϕ2i (ψ

∗
li)

2
)
+
∑
(i,j)

E
(
ϕiψ

∗
liϕjψ

∗
lj

)
= O(n).
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Lemma D.7. Suppose qpren ≻ logn
log logn/n. Under Assumptions 1 and 4, we have

1

n

n∑
i=1

(Zssiv
i + δ̂i)ϕi =

1

n

n∑
i=1

Zssiv
i ηϕi + oP

(√
qpren

)
. (65)

Proof of Lemma D.7. We rewrite it as

1

n

n∑
i=1

(Zssiv
i + δ̂i)ϕi =

1

n

n∑
i=1

(
Zssiv
i +

r∑
k=1

γ̂kψ̂ki

)
ϕi

=
1

n

n∑
i=1

(
Zssiv
i +

r∑
k=1

γ̂kψ̂ki

)(
r∑

l=1

µϕn,lψ
∗
l (wi) + ηϕi

)

=
1

n

n∑
i=1

(
Zssiv
i +

r∑
k=1

γ̂Rk ψ̂
R
ki

)
ηϕi +

1

n

r∑
l=1

µϕn,l

n∑
i=1

(
Zssiv
i +

r∑
k=1

γ̂Rk ψ̂
R
ki

)(
ψ∗
l (wi)− ψ̂R

li

)
=S1 + S2,

where the last to second inequality holds by the construction of γ̂k. For the first part of S1,

S11 =
1
n

∑n
i=1 Z

ssiv
i ηϕi , the expectation is zero, and the variance is

Var(S11) = Var

 1

n

n∑
i=1

∑
j ̸=i

Apre
ij (Tj − π)ηϕi


=

1

n2

∑
(i,j),i ̸=j

Var
(
Apre

ij (Tj − π)ηϕi

)
+

1

n2

∑
(i,j),i ̸=j

Cov
(
Apre

ij (Tj − π)ηϕi , A
pre
ji (Ti − π)ηϕj

)
+

1

n2

∑
(i,j,k)

all distinct

Cov
(
Apre

ij (Tj − π)ηϕi , A
pre
ik (Tk − p)ηϕi

)
+

1

n2

∑
(i,j,k)

all distinct

Cov
(
Apre

ij (Tj − π)ηϕi , A
pre
kj (Tj − π)ηϕk

)

+
1

n2

∑
(i,j,k,l)

all distinct

Cov
(
Apre

ij (Tj − π)ηϕi , A
pre
kl (Tl − p)ηϕk

)

=
1

n2

∑
(i,j),i ̸=j

Var
(
Apre

ij (Tj − π)ηϕi

)
= O (qpren ) ,

where by construction, we have

1

n2

∑
(i,j,k)

all distinct

Cov
(
Apre

ij (Tj − π)ηϕi , A
pre
kj (Tj − π)ηϕk

)

=π(1− π)
1

n2

n∑
j=1

(qpren )2
n∑

l1=1

n∑
l2=1

λϕl1λ
ϕ
l2
E

(
ψ∗
l1(wj)ψ

∗
l2(wj)

n∑
i=1

ψ∗
l1(wi)

n∑
k=1

ηϕi ψ
∗
l2(wk)η

ϕ
k

)
= 0.

Therefore, S11 = OP

(√
qpren

)
.

For S12 = 1
n

∑n
i=1

(∑r
k=1 γ̂

R
k ψ̂

R
ki

)
ηϕi , we span ηϕi onto the subspace of {ψk}nk=1 as ηϕi =
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∑n
l=1 αlψ

∗
l (wi) with

∑n
l=1 α

2
l = n. By the property of

∑n
i=1 η

ϕ
i ψ

∗
k(wi) = 0 for k ≤ r, we have

αk = µϕn,k for k ≤ r. Thus, ηϕi =
∑n

l=r+1 αlψ
∗
l (wi). We bound the term in L2 norm:

E

( n∑
i=1

ηϕi (ψ̂
R
ki − ψ∗

k(wi))

)2
 = E

( n∑
l=r+1

αlψ
∗
l (ψ̂

R
k − ψ∗

k)

)2


=E

[
n∑

l=r+1

α2
l

(
ψ∗
l (ψ̂

R
k − ψ∗

k)
)2]

+ E

 ∑
(l1,l2)>r

αl1αl2

(
ψ∗
l1(ψ̂

R
k − ψ∗

k)
)(

ψ∗
l2(ψ̂

R
k − ψ∗

k)
)

=OP

n(√ log n

log log n
/(nqpren )

)2


and thus

n∑
i=1

ηϕi (ψ̂
R
ki − ψ∗

k(wi)) = OP

(
1√
nqpren

√
log n

log logn

)
.

Therefore,

S12 =

r∑
k=1

γ̂k
n

n∑
i=1

ηϕi ψ̂ki =

r∑
k=1

γ̂Rk
n

n∑
i=1

ηϕi ψ̂
R
ki =

r∑
k=1

γ̂Rk
n

[
n∑

i=1

ηϕi (ψ̂
R
ki − ψ∗

k(wi))

]
= OP

(√
log n

log log n
/n

)

by Lemma D.4 and Lemma D.6. For S2, we have

S2 =
1

n

r∑
l=1

µϕn,l

n∑
i=1

(
ψ∗
l (wi)− ψ̂R

li

)(
Zssiv
i +

r∑
k=1

γ̂Rk ψ̂
R
ki

)
= S21 + S22.

For S21, we have

S21 =
1

n

r∑
l=1

µϕn,l

n∑
i=1

(
ψ∗
l (wi)− ψ̂R

li

)
Zssiv
i =

1

n

r∑
l=1

µϕn,l

n∑
j=1

(Tj − π)

n∑
i=1

(
ψ∗
l (wi)− ψ̂R

li

)
Apre

ij

=OP

(√
log n

log logn
/n

)
.

For S22, we have

S22 =
1

n

r∑
l=1

µϕn,l

n∑
i=1

(
ψ∗
l (wi)− ψ̂R

li

)( r∑
k=1

γ̂Rk ψ̂
R
ki

)
=

1

n

r∑
l=1

r∑
k=1

µϕn,lγ̂
R
k

n∑
i=1

(
ψ∗
l (wi)− ψ̂R

li

)
ψ̂R
ki.

For each fixed pair of (k, l), we have∣∣∣∣∣
n∑

i=1

(
ψ∗
l (wi)− ψ̂R

li

)
ψ̂R
ki

∣∣∣∣∣ =
∣∣∣∣(ψ∗

l − ψ̂R
l

)⊤
ψ̂R
k

∣∣∣∣ = ∣∣∣∣(ψ∗
l − ψ̂R

l

)⊤ (
ψ̂R
k − ψ∗

k

)
+
(
ψ∗
l − ψ̂R

l

)⊤
ψ∗
k

∣∣∣∣
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≤
∥∥∥ψ∗

l − ψ̂R
l

∥∥∥∥∥∥ψ∗
k − ψ̂R

k

∥∥∥+ ∣∣∣∣(ψ∗
l − ψ̂R

l

)⊤
ψ∗
k

∣∣∣∣ = OP

(√
log n

log logn
/(nqpren )

)

by (59) and Lemma D.4. Therefore,

S22 = OP

(√
n

n
nqpren

)
OP

(√
log n

log logn
/(nqpren )

)
= OP

(√
log n

log logn
/n

)
.

Thus, S11 is the leading term OP(
√
qpren ), and

1

n

n∑
i=1

(Zssiv
i + δ̂i)ϕi =

1

n

n∑
i=1

Zssiv
i ηϕi + oP

(√
qpren

)
.

Define µrn,k =
∑n

i=1(r0,i + r1,i − µr1,i)ψ
∗
k(wi) and ηri = (r0,i + r1,i − µr1,i)−

∑r
k=1 µ

r
n,kψ

∗
k(wi).

Lemma D.8. Suppose qpren ≻ logn
log logn/n. Under Assumptions 1 and 4, then

1

n

n∑
i=1

(Zssiv
i + δ̂i)Mi =

1

n

n∑
i=1

Zssiv
i ηri +OP

(√
qpren

)
. (66)

Proof of Lemma D.8. By expansion,

1

n

n∑
i=1

(Zssiv
i + δ̂i)Mi =

1

n

n∑
i=1

(Zssiv
i + δ̂i)(ξi + µr1,i) +

1

n

n∑
i=1

(Zssiv
i + δ̂i)(r0,i + r1,i − µr1,i).

First, by Lemma D.7, we can show

1

n

n∑
i=1

(Zssiv
i + δ̂i)(ξi + µr1,i) =

1

n

n∑
i=1

Zssiv
i η

(ξi+µr1,i)
i +OP (q

pre
n ) = OP

(√
qpren

)
.

Second, we have

1

n

n∑
i=1

(Zssiv
i + δ̂i)(r0,i + r1,i − µr1,i) =

1

n

n∑
i=1

(
Zssiv
i +

r∑
k=1

γ̂kψ̂ki

)
(r0,i + r1,i − µr1,i)

=
1

n

n∑
i=1

(
Zssiv
i +

r∑
k=1

γ̂kψ̂ki

)(
r∑

l=1

µrn,lψ
∗
l (wi) + ηri

)

=
1

n

n∑
i=1

(
Zssiv
i +

r∑
k=1

γ̂kψ̂ki

)
ηri +

1

n

r∑
l=1

µrn,l

n∑
i=1

(
Zssiv
i +

r∑
k=1

γ̂kψ̂ki

)(
ψ∗
l (wi)− ψ̂R

li

)
=S1 + S2.
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For S1, we have S1 = S11 + S12. For S11, we have

E(S11) = E

 1

n

n∑
i=1

∑
j ̸=i

Apre
ij (Tj − π)ηri

 ≍ min{qpren , qpostn }
qpostn

and

Var(S11) = Var

 1

n

n∑
i=1

∑
j ̸=i

Apre
ij (Tj − π)ηri


=

1

n2

∑
(i,j),i ̸=j

Var
(
Apre

ij (Tj − π)ηri

)
+

1

n2

∑
(i,j),i ̸=j

Cov
(
Apre

ij (Tj − π)ηri , A
pre
ji (Ti − π)ηrj

)
+

1

n2

∑
(i,j,k)

all distinct

Cov
(
Apre

ij (Tj − π)ηri , A
pre
ik (Tk − p)ηri

)
+

1

n2

∑
(i,j,k)

all distinct

Cov
(
Apre

ij (Tj − π)ηri , A
pre
kj (Tj − π)ηrk

)

+
1

n2

∑
(i,j,k,l)

all distinct

Cov
(
Apre

ij (Tj − π)ηri , A
pre
kl (Tl − p)ηrk

)

=
1

n2

∑
(i,j),i ̸=j

Var
(
Apre

ij (Tj − π)ηri

)
= O

(
qpren

nqpostn

)
.

Therefore,

S11 = OP

(
min{qpren , qpostn }

qpostn

)
+OP

 √
qpren√
nqpostn

 .

For S12, we can show that

1

n

n∑
i=1

(
r∑

k=1

γ̂kψ̂ki

)
ηri =

r∑
k=1

γ̂k
n

n∑
i=1

ηri ψ̂ki =

r∑
k=1

γ̂k
n

(
n∑

i=1

ηri (ψ̂ki − ψ∗
k(wi))

)

=OP

 1

n

√
qpostn

√
log n

log log n
/n


by Lemma D.4 and Lemma D.6. Therefore,

S1 =
1

n

n∑
i=1

(
Zssiv
i +

r∑
k=1

γ̂kψ̂ki

)
ηri = OP

(
min{qpren , qpostn }

qpostn

)
+OP

 √
qpren√
nqpostn

 .

For S2, we apply the same proof in Lemma D.7. By definition and Lemma B.3,

µrn,k =

n∑
i=1

(r0,i + r1,i − µr1,i)ψ
∗
k(wi) = OP

 1√
nqpostn

 ,
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and this implies that S2 = OP

(
1

n
√

qpost
n

√
logn

log logn/n

)
. To conclude,

1

n

n∑
i=1

(Zssiv
i + δ̂i)(r0,i + r1,i − µr1,i) = E

(
1

n

n∑
i=1

Zssiv
i ηri

)
+OP

 √
qpren√
nqpostn

 .

D.2 Consistency

Define

Dde
n =


1 0 0

0 1 0

0 0 1√
nqpren

 .

We first show the probability limit of
(
Dde

n (Z̃de)⊤X
)−1

whose closed form is

(
Dde

n (Z̃de)⊤X
)−1

=
1

det(Dde
n (Z̃de)⊤X)


c11 c12 c13

c21 c22 c23

c31 c32 c33

 (67)

where

c11 =

(
1

n

n∑
i=1

Ti

)(
1

n
√
nqpren

n∑
i=1

Mi(Z
ssiv
i + δ̂i)

)
−

(
1

n

n∑
i=1

TiMi

)(
1

n
√
nqpren

n∑
i=1

Ti(Z
ssiv
i + δ̂i)

)

c12 = −

(
1

n

n∑
i=1

Ti

)(
1

n
√
nqpren

n∑
i=1

Mi(Z
ssiv
i + δ̂i)

)
+

(
1

n
√
nqpren

n∑
i=1

Ti(Z
ssiv
i + δ̂i)

)(
1

n

n∑
i=1

Mi

)
c13 = a13

c21 = −

(
1

n

n∑
i=1

Ti

)(
1

n
√
nqpren

n∑
i=1

Mi(Z
ssiv
i + δ̂i)

)
+

(
1

n
√
nqpren

n∑
i=1

(Zssiv
i + δ̂i)

)(
1

n

n∑
i=1

TiMi

)

c22 =

(
1

n
√
nqpren

n∑
i=1

Mi(Z
ssiv
i + δ̂i)

)
−

(
1

n

n∑
i=1

Mi

)(
1

n
√
nqpren

n∑
i=1

(Zssiv
i + δ̂i)

)
c23 = a23

c31 = −

(
1

n

n∑
i=1

Ti

)(
1

n
√
nqpren

n∑
i=1

(1− Ti)(Z
ssiv
i + δ̂i)

)

c32 = −

(
1

n
√
nqpren

n∑
i=1

Ti(Z
ssiv
i + δ̂i)

)
+

(
1

n
√
nqpren

n∑
i=1

(Zssiv
i + δ̂i)

)(
1

n

n∑
i=1

Ti

)
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c33 = a33

and

det(Dde
n (Z̃de)⊤X) = c33c22 − c32c23.

Define c∗22 =
E[Zssiv

i (r0,i+r1,i)]√
nqpre

n

where c∗22 ≍
min{qpren ,qpost

n }
qpost
n

√
nqpren

.

Theorem D.1. Suppose qpren ≻ log(n)
log(log(n))/n. Under Assumptions 1 and 4, then

Case (a):

(
Dde

n (Z̃de)⊤X
)−1

=

 πc∗22 −πc∗22 a∗13
−πc∗22 c∗22 −Cov(Ti, ξi + µr1,i)

0 0 π(1− π)

+OP

(
1√
n

)
π(1− π)c∗22 +OP

(
1√
n

) .

Case (b):

(
Dde

n (Z̃de)⊤X
)−1

=


πc∗22 +OP

(
1√
n

)
−πc∗22 +OP

(
1√
n

)
a∗13 +OP

(
1√
n

)
−πc∗22 +OP

(
1√
n

)
c∗22 +OP

(
1

n
√

qpost
n

)
OP

(
1

n
√

qpost
n

)
OP

(
1√
n

)
OP

(
1√
n

)
π(1− π) +OP

(
1√
n

)


π(1− π)c∗22 +OP

(
1

n
√

qpost
n

) .

Proof of Theorem D.1. The proof is analogous to Theorem C.1 by applying Lemma D.7.

Proof of Theorem 4.3. We show the consistency by Theorem D.1. By Lemma D.7, we can show

that

1

n
√
nqpren

n∑
i=1

(Zssiv
i + δ̂i) =

1

n
√
nqpren

n∑
i=1

Zssiv
i η1i +OP

(√
qpren√
n

)
= OP

(
1√
n

)

and thus

1

n
√
nqpren

n∑
i=1

(
(Zssiv

i + δ̂i)−
1

n

n∑
i=1

(Zssiv
i + δ̂i)

)
ui = OP

(
1√
n

)
.
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Case (a): By combining the results from Theorem D.1, we have

β̂de1 − β1 =
c22

1
n

∑n
i=1(Ti − T̄ )ui + c23

1

n
√

nqpren

∑n
i=1

(
(Zssiv

i + δ̂i)− 1
n

∑n
i=1(Z

ssiv
i + δ̂i)

)
ui

c33c22 − c32c23

=

(
c∗22 +OP

(
1√
n

))
OP

(
1√
n

)
+
(
−Cov(Ti, ξi + µr1,i) +OP

(
1√
n

))
OP

(
1√
n

)
π(1− π)c∗22 +OP

(
1√
n

)
=

OP

(
1√
n

)
π(1− π)c∗22 +OP

(
1√
n

) ,
and

β̂de2 − β2 =
c33

1

n
√

nqpre
n

∑n
i=1

(
(Zssiv

i + δ̂i)− 1
n

∑n
i=1(Z

ssiv
i + δ̂i)

)
ui + c32

1
n

∑n
i=1(Ti − T̄ )ui

c33c22 − c32c23

=

(
π(1− π) +OP

(
1√
n

))
OP

(
1√
n

)
+OP

(
1√
n

)
OP

(
1√
n

)
π(1− π)c∗22 +OP

(
1√
n

)
=

OP

(
1√
n

)
π(1− π)c∗22 +OP

(
1√
n

) .
Therefore, β̂de1 and β̂de2 are consistent when max{qpren , qpostn } ≺

√
qpren with

β̂de1 − β1 = OP

(
max{qpren , qpostn }√

qpren

)
and β̂de2 − β2 = OP

(
max{qpren , qpostn }√

qpren

)
.

It follows that β̂de0 is also consistent when max{qpren , qpostn } ≺
√
qpren with

β̂de0 − β0 = OP

(
max{qpren , qpostn }√

qpren

)
.

Case (b) By combining the results from Theorem D.1, we have

β̂de1 − β1 =
c22

1
n

∑n
i=1(Ti − T̄ )ui + c23

1

n
√

nqpren

∑n
i=1

(
(Zssiv

i + δ̂i)− 1
n

∑n
i=1(Z

ssiv
i + δ̂i)

)
ui

c33c22 − c32c23

=

(
c∗22 +O

(
1

n
√

qpost
n

))
OP

(
1√
n

)
+OP

(
1

n
√

qpost
n

)
OP

(
1√
n

)
π(1− π)c∗22 +OP

(
1

n
√

qpost
n

) .
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The consistency of β̂de1 always holds with

β̂de1 − β1 = OP

(
1√
n

)
.

Then, for β̂de2 , we have

β̂de2 − β2 =
c33

1

n
√

nqpre
n

∑n
i=1

(
(Zssiv

i + δ̂i)− 1
n

∑n
i=1(Z

ssiv
i + δ̂i)

)
ui + c32

1
n

∑n
i=1(Ti − T̄ )ui

c33c22 − c32c23

=

(
π(1− π) +OP

(
1√
n

))
OP

(
1√
n

)
+OP

(
1√
n

)
OP

(
1√
n

)
π(1− π)c∗22 +O

(
1

n
√

qpost
n

) .

We can conclude that with max{qpren , qpostn } ≺
√
qpren , then

β̂de2 − β2 = OP

(
max{qpren , qpostn }√

qpren

)
.

Furthermore, with max{qpren , qpostn } ≺
√
qpren , then

β̂de0 − β0 = OP

(
max{qpren , qpostn }√

qpren

)
.

Proof of Corollary 4.2. Corollary 4.2 is a direct result of Theorem 4.3 under qpren ≼ qpostn .

D.3 Asymptotic normality

Proof of Theorem 4.4. We complete the proof in three steps.

Step 1: asymptotic normality. We prove the asymptotic normality of the numerator. By

Lemma D.7, we have

1

n
√
nqpren

n∑
i=1

(Zssiv
i + δ̂i)ui =

1

n
√
nqpren

n∑
i=1

∑
j ̸=i

Apre
ij (Tj − π)ηui + oP

(
1√
n

)
. (68)
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Define Hij = Apre
ij (Tj − π)ηui and σ2n = Var

(∑
(i,j)Hij

)
. By Theorem B.2, we have

∆

 1

σn

∑
(i,j)

Hij ,N (0, 1)

 ≤ 1

σ3n

∑
i,j

E

∣∣∣∣∣∣Hij

 ∑
(k,l)∈S(i,j)

Hkl

2∣∣∣∣∣∣
+

√
2√
πσ2n

√√√√√Var

∑
(i,j)

Hij

∑
(k,l)∈S(i,j)

Hkl

.
(69)

By definition of S(i,j), we have

∑
(k,l)∈S(i,j)

H(k,l) = Hij +Hji +
∑
k ̸=i,j

Hik +
∑
k ̸=i,j

Hki +
∑
k ̸=i,j

Hjk +
∑
k ̸=i,j

Hkj . (70)

For the first term in (69),

E

∣∣∣∣∣∣Hij

 ∑
(k,l)∈S(i,j)

Hkl

2∣∣∣∣∣∣
 ≤ C · E

Apre
ij

 ∑
(k,l)∈S(i,j)

Hkl

2 .
Then we consider the cases in (70), respectively.

(1): Hij +Hji. By definition,

E
[
Apre

ij (Hij +Hji)
2
]
= E

[
Apre

ij

(
(Tj − π)ηui + (Ti − π)ηuj

)2] ≤ Cqpren .

(2):
∑

k ̸=i,j Hik. It can be bounded above by

E

Apre
ij

∑
k ̸=i,j

Hik

2 = E

Apre
ij

∑
k ̸=i,j

H2
ik +

∑
(k1,k2)

Hik1
Hik2


=E

Apre
ij

∑
k ̸=i,j

Apre
ik (Tk − π)2(ηui )

2 +
∑

(k1,k2)

Apre
ik1

(Tk1
− π)ηui A

pre
ik2

(Tk2
− π)ηui


=E

Apre
ij

∑
k ̸=i,j

Apre
ik (Tk − π)2(ηui )

2

 ≤ Cn(qpren )2

by independence between (Tk1
− π) and (Tk2

− π). By symmetry, we have

E

Apre
ij

∑
k ̸=i,j

Hjk

2 ≤ Cn(qpren )2.
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(3):
∑

k ̸=i,j Hki. It can be bounded above by

E

Apre
ij

∑
k ̸=i,j

Hki

2 = E

Apre
ij

∑
k ̸=i,j

H2
ki +

∑
(k1,k2)

Hk1iHk2i


=E

Apre
ij

∑
k ̸=i,j

Apre
ki (Ti − π)2(ηuk )

2 + (Ti − π)2
∑

(k1,k2)

Apre
k1i
ηuk1

Apre
k2i
ηuk2


=E

Apre
ij (Ti − π)2

∑
k ̸=i,j

Apre
ki (η

u
k )

2

 ≤ Cn(qpren )2,

where the last line follows from

E

Apre
ij (Ti − π)2

∑
(k1,k2)

Apre
k1i
ηuk1

Apre
k2i
ηuk2


=π(1− π)(qpren )3E

[
f0(i, j)

∑
k1

n∑
l1=1

λ∗l1ψ
∗
l1(wk1

)ψ∗
l1(wi)η

u
k1

∑
k2

n∑
l2=1

λ∗l2ψ
∗
l2(wk2

)ψ∗
l2(wi)η

u
k2

]
= 0.

By combining these three cases, we have

1

σ3n

∑
i,j

E

∣∣∣∣∣∣Hij

 ∑
(k,l)∈S(i,j)

Hkl

2∣∣∣∣∣∣
 ≤ C

n2n(qpren )2

n3(qpren )3/2
= C

√
qpren .

For the second term in (69), we decompose it into several pieces in terms of (70), and consider these

terms one by one.

(1): Hij +Hji. By definition,

Var

∑
(i,j)

Hij (Hij +Hji)

 = Var

∑
(i,j)

Apre
ij (Tj − π)ηui

(
(Tj − π)ηui + (Ti − π)ηuj

)
=
∑
(i,j)

Var
(
Apre

ij (Tj − π)ηui
(
(Tj − π)ηui + (Ti − π)ηuj

))
+

∑
(i,j,k)

all distinct

Cov
(
Apre

ij (Tj − π)ηui
(
(Tj − π)ηui + (Ti − π)ηuj

)
, Apre

ik (Tk − π)ηui ((Tk − π)ηui + (Ti − π)ηuk )
)

≤Cn3(qpren )2.
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(2):
∑

k ̸=i,j Hik. By definition,

Var

∑
(i,j)

Hij

∑
k ̸=i,j

Hik

 ≤ Var

 ∑
(i,j,k)

all distinct

Apre
ij (Tj − π)Apre

ik (Tk − π) (ηui )
2


=

∑
(i,j,k)

all distinct

Var
(
(Tj − π)(Tk − π)Apre

ij A
pre
ik (ηui )

2
)

+
∑

(i1,i2,j,k)
all distinct

E
(
(Tj − π)2(Tk − π)2Apre

i1j
Apre

i1k

(
ηui1
)2
Apre

i2j
Apre

i2k

(
ηui2
)2)

≤ C1n
3(qpren )2 + C2n

4(qpren )4.

(3):
∑

k ̸=i,j Hjk. By analogous argument, we have

Var

∑
(i,j)

Hij

∑
k ̸=i,j

Hjk

 ≤ C1n
3(qpren )2 + C2n

4(qpren )3.

(4):
∑

k ̸=i,j Hki. By definition,

Var

∑
(i,j)

Hij

∑
k ̸=i,j

Hki

 = Var

 ∑
(i,j,k)

all distinct

Apre
ij (Tj − π)ηui A

pre
ki (Ti − π)ηuk


=

∑
(i,j,k)

all distinct

Var
(
Apre

ij (Tj − π)ηui A
pre
ki (Ti − π)ηuk

)

+
∑

(i,j,k1,k2)
all distinct

E
(
(Tj − π)2(Ti − π)2Apre

ij A
pre
k1i
ηuk1

Apre
ij (ηui )

2Apre
k2i
ηuk2

)
≤ C1n

3(qpren )2.

(5):
∑

k ̸=i,j Hkj . Recall that
∑

i=1 ηiψ
∗
k(wi) = 0.

Var

∑
(i,j)

Hij

∑
k ̸=i,j

Hkj

 ≤ E


 ∑

(i,j,k)
all distinct

Apre
ij (Tj − π)2ηui A

pre
kj η

u
k


2

=
∑

(i1,j1,k1)
(i2,j2,k2)

E
[
(Tj1 − π)2(Tj2 − π)2Apre

i1j1
ηui1A

pre
k1j1

ηuk1
Apre

i2j
ηui2A

pre
k2j2

ηuk2

]

=π2(1− π)2
∑

(i,j1,j2,k)
all distinct

E
[
Apre

ij1
Apre

kj1
Apre

kj2
(ηui )

2(ηuk )
2
]
+ π2(1− π)2

∑
(i,j1,j2)

all distinct

E
[
Apre

ij1
Apre

ij2
(ηui )

4
]

≤C1n
4(qpren )3 + C2n

3(qpren )2.
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By combining these results, we can show that

√
2√
πσ2n

√√√√√Var

∑
i,j

Hij

∑
(k,l)∈S(i,j)

Hkl

 ≤ C
1

n2qpren

√
n4(qpren )3 = O

(√
qpren

)
.

Then by (69), we have that

1

σn

n∑
i=1

∑
j ̸=i

Apre
ij (Tj − π)ηui

d→ N (0, 1) .

Together with Cramér–Wold Theorem and (68), we can show that

(V de
num)

−1/2

(
n∑

i=1

Z̃de
i ui

)
d→ N (0, I3) .

Step 2: consistent variance estimator. Recall that ûdei − ui = (β̂de − β)⊤Xi. By definition

and Lemma D.4, we have

µ̂Rk − µk =

n∑
i=1

(ûdei − ui)(ψ̂
R
ki − ψ∗

k(wi)) +

n∑
i=1

(ûdei − ui)ψ
∗
k(wi) +

n∑
i=1

ui(ψ̂
R
ki − ψ∗

k(wi)) = oP
(√
n
)
,

where the last line follows from

n∑
i=1

(ûdei − ui)(ψ̂
R
ki − ψ∗

k(wi))

=(β̂de0 − β0)

n∑
i=1

(ψ̂R
ki − ψ∗

k(wi)) + (β̂de1 − β1)

n∑
i=1

Ti(ψ̂
R
ki − ψ∗

k(wi)) + (β̂de2 − β2)

n∑
i=1

Mi(ψ̂
R
ki − ψ∗

k(wi))

=OP

(√
log n

log log n
/(
√
nqpren )

)
= oP(

√
n),

n∑
i=1

(ûdei − ui)ψ
∗
k(wi) = (β̂de0 − β0)

n∑
i=1

ψ∗
k(wi) + (β̂de1 − β1)

n∑
i=1

Tiψ
∗
k(wi) + (β̂de2 − β2)

n∑
i=1

Miψ
∗
k(wi) = oP

(√
n
)

and

n∑
i=1

ui(ψ̂
R
ki − ψ∗

k(wi)) ≤

√√√√ n∑
i=1

u2i

n∑
i=1

(ψ̂R
ki − ψ∗

k(wi))2 = OP

(
1√
qpren

(
log n

log logn

)1/4
)

= oP
(√
n
)
.

Now we show the consistency of the variance estimators one by one.

(1): The consistency of the (1, 1) element of V̂ de
num. The proof is analogous to that of Theorem 4.2

and follows from β̂de − β = oP(1).
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(2): The consistency of the (3, 3) element of V̂ de
num. By definition,

η̂ui = ûdei −
r∑

k=1

µ̂kψ̂ki =û
de
i − ui + ui −

r∑
k=1

µkψ
∗
k(wi)−

r∑
k=1

µ̂kψ̂ki +

r∑
k=1

µkψ
∗
k(wi)

=ηui + ûdei − ui −∆i

where ∆i =
∑r

k=1

(
µ̂Rk ψ̂

R
ki − µkψ

∗
k(wi)

)
. The variance estimator can be decomposed as

1

n2qpren

n∑
i=1

n∑
j=1

Apre
ij (η̂ui )

2 =
1

n2qpren

n∑
i=1

n∑
j=1

Apre
ij (ηui + ûdei − ui −∆i)

2

=
1

n2qpren

n∑
i=1

n∑
j=1

Apre
ij (ηui )

2 +
1

n2qpren

n∑
i=1

n∑
j=1

Apre
ij (ûdei − ui −∆i)

2 +
2

n2qpren

n∑
i=1

n∑
j=1

Apre
ij η

u
i (û

de
i − ui −∆i)

≤ 1

n2qpren

n∑
i=1

n∑
j=1

Apre
ij (ηui )

2 +
2

n2qpren

n∑
i=1

n∑
j=1

Apre
ij (ûdei − ui)

2 +
2

n2qpren

n∑
i=1

n∑
j=1

Apre
ij ∆2

i

+
2

n2qpren

n∑
i=1

n∑
j=1

Apre
ij η

u
i (û

de
i − ui −∆i)

=S1 + S2 + S3 + S4. (71)

For S1, the expectation is

E

 1

n2qpren

n∑
i=1

n∑
j=1

Apre
ij (ηui )

2

 = O(1).

The variance is

Var

 1

n2qpren

n∑
i=1

(ηui )
2

n∑
j=1

Apre
ij

 =
1

n4(qpren )2

 n∑
i=1

Var

(ηui )
2

n∑
j=1

Apre
ij

+
∑
(i,k)

Cov

(ηui )
2

n∑
j=1

Apre
ij , (η

u
k )

2
n∑

j=1

Apre
kj


=

1

n4(qpren )2

n∑
i=1

n∑
j=1

Var
(
(ηui )

2Apre
ij

)
+

1

n4(qpren )2

n∑
i=1

∑
(j1,j2)

Cov
(
(ηui )

2Apre
ij1
, (ηui )

2Apre
ij2

)

+
1

n4(qpren )2

∑
(i,k)

n∑
j=1

Cov
(
(ηui )

2Apre
ij , (η

u
k )

2Apre
kj

)
+

1

n4(qpren )2

∑
(i,k)

∑
(j1,j2)

Cov
(
(ηui )

2Apre
ij1
, (ηuk )

2Apre
kj2

)

=
1

n4(qpren )2

 n∑
i=1

n∑
j=1

Var
(
(ηui )

2Apre
ij

)
+

n∑
i=1

∑
(j1,j2)

Cov
(
(ηui )

2Apre
ij1
, (ηui )

2Apre
ij2

)
+
∑
(i,k)

n∑
j=1

Cov
(
(ηui )

2Apre
ij , (η

u
k )

2Apre
kj

)
= O

(
1

n

)
.
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Therefore,

1

n2qpren

n∑
i=1

n∑
j=1

Apre
ij (ηui )

2 = E

 1

n2qpren

n∑
i=1

n∑
j=1

Apre
ij (ηui )

2

+OP

(
1√
n

)
. (72)

For S2, with β̂
de − β = oP(1), we can show that

1

n2qpren

n∑
i=1

n∑
j=1

Apre
ij (ûdei − ui)

2 =
1

n2qpren

n∑
i=1

n∑
j=1

Apre
ij

(
(β̂de − β)⊤Xi

)2

≤3
1

n2qpren

(β̂de0 − β0)
2

n∑
i=1

n∑
j=1

Apre
ij + (β̂de1 − β1)

2
n∑

i=1

n∑
j=1

Apre
ij Ti + (β̂de2 − β2)

2
n∑

i=1

n∑
j=1

Apre
ij M

2
i


=oP(1).

For S3, by definition, we have

1

n2qpren

n∑
i=1

n∑
j=1

Apre
ij ∆2

i =
1

n2qpren

n∑
i=1

(
r∑

k=1

(
µ̂Rk ψ̂

R
ki − µkψ

∗
k(wi)

))2 n∑
j=1

Apre
ij

=
1

n2qpren

r∑
k=1

n∑
i=1

(
µ̂Rk ψ̂

R
ki − µkψ

∗
k(wi)

)2 n∑
j=1

Apre
ij

+
1

n2qpren

∑
(k,l)

n∑
i=1

(
µ̂Rk ψ̂

R
ki − µkψ

∗
k(wi)

)(
µ̂Rl ψ̂

R
li − µlψ

∗
l (wi)

) n∑
j=1

Apre
ij .

By definition,

µ̂Rk ψ̂
R
ki − µkψ

∗
k(wi) =µ̂

R
k ψ̂

R
ki − µkψ̂

R
ki + µkψ̂

R
ki − µkψ

∗
k(wi)

=(µ̂Rk − µk)(ψ̂
R
ki − ψ∗

k(wi)) + (µ̂Rk − µk)ψ
∗
k(wi) + µk(ψ̂

R
ki − ψ∗

k(wi)).

For the first term of S3, we have

1

3

1

n2qpren

r∑
k=1

n∑
i=1

(
µ̂Rk ψ̂

R
ki − µkψ

∗
k(wi)

)2 n∑
j=1

Apre
ij

≤ 1

n2qpren

r∑
k=1

(µ̂Rk − µk)
2

n∑
i=1

(ψ̂R
ki − ψ∗

k(wi))
2

n∑
j=1

Apre
ij +

1

n2qpren

r∑
k=1

(µ̂Rk − µk)
2

n∑
i=1

ψ∗
k(wi)

2
n∑

j=1

Apre
ij

+
1

n2qpren

r∑
k=1

µ2k

n∑
i=1

(ψ̂R
ki − ψ∗

k(wi))
2

n∑
j=1

Apre
ij

=oP(1)

100



where the last equality follows from

E

 n∑
i=1

ψ∗
k(wi)

2
n∑

j=1

Apre
ij

 = E

 n∑
i=1

ψ∗
k(wi)

2
n∑

j=1

qpren g0(i, j)

 ≤ Cnqpren

and

n∑
i=1

(ψ̂R
ki − ψ∗

k(wi))
2

n∑
j=1

Apre
ij ≤ max

i

n∑
j=1

Apre
ij

n∑
i=1

(ψ̂R
ki − ψ∗

k(wi))
2 = OP

(√
log n

log logn

)
.

The second term follows from an analogous argument, and thus S3 = oP(1).

For S4:

1

n2qpren

n∑
i=1

n∑
j=1

Apre
ij η

u
i (û

de
i − ui −∆i) =

1

n2qpren

n∑
i=1

n∑
j=1

Apre
ij η

u
i (û

de
i − ui)−

1

n2qpren

n∑
i=1

n∑
j=1

Apre
ij η

u
i ∆i.

For the first term,

1

n2qpren

n∑
i=1

n∑
j=1

Apre
ij ηi(û

de
i − ui)

=(β̂de0 − β0)
1

n2qpren

n∑
i=1

n∑
j=1

Apre
ij η

u
i + (β̂de1 − β1)

1

n2qpren

n∑
i=1

n∑
j=1

Apre
ij η

u
i Ti + (β̂de2 − β2)

1

n2qpren

n∑
i=1

n∑
j=1

Apre
ij η

u
i Mi.

By bounding the term in L2 norm:

E

 n∑
i=1

n∑
j=1

Apre
ij ηiMi

2
=E

 n∑
i=1

 n∑
j=1

Apre
ij η

2
iM

2
i +

n∑
(j1,j2)

Apre
ij1
Apre

ij2
η2iM

2
i

+
∑
(i1,i2)

ηi1Mi1ηi2Mi2

 n∑
j=1

Apre
i1j

 n∑
j=1

Apre
i2j


≤E

 n∑
i=1

 n∑
j=1

Apre
ij η

2
iM

2
i +

n∑
(j1,j2)

Apre
ij1
Apre

ij2
η2iM

2
i

+
∑
(i1,i2)

(
η2i1M

2
i1 + η2i2M

2
i2

) n∑
j=1

Apre
i1j

 n∑
j=1

Apre
i2j


≤C1n

2qpren + C2n
3(qpren )2 + C3n

4(qpren )2,

which implies that

n∑
i=1

n∑
j=1

Apre
ij η

u
i Mi = OP

(
n2qpren

)
.
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With analogous arguments and β̂de − β = oP(1), we can show that

1

n2qpren

n∑
i=1

n∑
j=1

Apre
ij η

u
i (û

de
i − ui) = oP(1).

For the second term,

1

n2qpren

n∑
i=1

n∑
j=1

Apre
ij η

u
i ∆i =

1

n2qpren

n∑
i=1

n∑
j=1

Apre
ij η

u
i

r∑
k=1

(
µ̂Rk ψ̂

R
ki − µkψ

∗
k(wi)

)
=

1

n2qpren

r∑
k=1

(µ̂Rk − µk)

n∑
i=1

ηui (ψ̂
R
ki − ψ∗

k(wi))

n∑
j=1

Apre
ij +

1

n2qpren

r∑
k=1

(µ̂Rk − µk)

n∑
i=1

ηui ψ
∗
k(wi)

n∑
j=1

Apre
ij

+
1

n2qpren

r∑
k=1

µk

n∑
i=1

n∑
j=1

Apre
ij η

u
i (ψ̂

R
ki − ψ∗

k(wi)) = oP(1)

where the last equality follows from

n∑
i=1

n∑
j=1

Apre
ij η

u
i (ψ̂

R
ki − ψ∗

k(wi)) ≤ ∥ηu∥2
∥∥∥Apre(ψ̂R

k − ψ∗
k)
∥∥∥
2
= OP

(√
n
)
OP

(√
log n

log log n

)
= OP(

√
nqpren )

and

E

 n∑
i=1

n∑
j=1

Apre
ij η

u
i ψ

∗
k(wi)

2
=E

 n∑
i=1

(η2i )
2ψ∗

k(wi)
2

 n∑
j=1

Apre
ij

2+ E

∑
(i1,i2)

ηui1ψ
∗
k(wi1)η

u
i2ψ

∗
k(wi2)

 n∑
j=1

Apre
i1j

 n∑
j=1

Apre
i2j

 ≤ n3(qpren )2.

Thus, S4 = oP(1). Therefore, we show that

1

n2qpren

n∑
i=1

n∑
j=1

Apre
ij (η̂ui )

2 = E

 1

n2qpren

n∑
i=1

n∑
j=1

Apre
ij (ηui )

2

+ oP(1).

Step 3 Steps 1–2 and CMT together imply the desired result:

(
V̂ de
num

)−1/2 (
(Z̃de)⊤u

)
d→ N (0, I3).

By Theorem D.1, we have shown the probability limit of (Z̃de)⊤X. By combining with CMT, we

can show (
V̂ de

)−1/2 (
β̂de − β

)
d→ N (0, I3).
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E Normalized SSIV

Borusyak et al. (2022) suggest the following normalized SSIV for Mi:

Zalt
i =

∑n
j=1A

pre
ij Tj∑n

j=1A
pre
ij

. (73)

The exclusion restriction holds by the randomness of the shocks and the normalization of the

shares:

E
[
Zalt
i ui

]
= E

[∑n
j=1A

pre
ij Tj∑n

j=1A
pre
ij

ui

]
= πE

[∑n
j=1A

pre
ij∑n

j=1A
pre
ij

ui

]
= 0.

Borusyak et al. (2022) state that the relevance condition holds when individual units are

mostly exposed to only a small number of shocks. In this section, we quantify the regime

where the normalized SSIV in (73) yields consistent estimators.

E.1 Consistency

For estimation, we consider the IV estimation with the IV vector:

Z̃alt
i = (1, Ti, Z

alt
i ).

Let β̂alt denote the vector of coefficients obtained from the above IV regression. Define Z̃alt

as the n× 3 matrix obtained by stacking Z̃alt
i .

Theorem E.1. Under Assumptions 1 and 3,

(a) if Var(ξi) > 0 with max{qpren , qpostn } ≺ 1√
n
, then

β̂alt − β = OP
(√
nmax{qpren , qpostn }

)
;

(b) if Var(ξi) = 0 with max{qpren , qpostn } ≺
√
nqpostn , then

β̂alt1 − β1 = OP

 1√
n
max

max{qpren , qpostn }√
qpostn

, 1


 .

Moreover, with max{qpren , qpostn } ≺ 1√
n
, then

β̂alt0 − β0 = OP
(√
nmax{qpren , qpostn }

)
and β̂alt2 − β2 = OP

(√
nmax{qpren , qpostn }

)
.
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Theorem E.1 establishes the consistency of β̂alt under both Cases (a) and (b). The

consistency regime and convergence rates of β̂alt0 and β̂alt2 remain unchanged across both cases.

However, in Case (b), where Apost is conditionally mean-independent of the treatment, β̂alt1

exhibits a faster convergence rate compared to Case (a). Additionally, β̂alt1 is consistent under

a less restrictive condition in Case (b).

Remark E.1. The consistency regime for the IV estimatos using the normalized SSIV in (73) is

the same as that for that of SSIV Zssiv
i in Theorem 4.1. This similarity arises because the primary

component of both IVs is
∑n

j=1A
post
ij Tj , which is endogenous due to its correlation with the error

term ui. Either normalization or centering around the expected number of treated friends helps to

control this endogenous component.

Corollary E.1 simplifies the results in Theorem E.1 to the special case where qpren ≼ qpostn .

Corollary E.1. Suppose qpren ≼ qpostn . Under Assumptions 1 and 3,

(a) if Var(ξi) > 0 with qpostn ≺ 1√
n
, then β̂alt − β = OP(

√
nqpostn );

(b) if Var(ξi) = 0 with qpostn ≺ 1√
n
, then β̂alt0 − β0 = OP(

√
nqpostn ) and β̂alt2 − β2 = OP(

√
nqpostn ).

Moreover, it always holds that β̂alt1 − β1 = OP

(
1√
n

)
.

Corollary E.1 establishes the consistency of β̂alt under both Cases (a) and (b). The

consistency regime and convergence rates of β̂alt0 and β̂alt2 remain unchanged across both cases.

However, in Case (b), where Apost is conditionally mean-independent of the treatment, β̂alt1

converges faster than in Case (a) and maintains the standard rate
√
n. Additionally, β̂alt1 is

consistent under a less restrictive condition in Case (b).

E.2 Proof of Theorem E.1

We start by providing some useful lemmas.

Lemma E.1 (Lemma 15 in Li and Wager (2022)). Consider an RCT under network interference

satisfying Assumption 1, with treatment assigned independently as Ti ∼ Bernoulli(π) for some

0 < π < 1.

1. Suppose furthermore that if we define g(w) =
∫ 1
0 min(1, g(w, t))dF (t), then the function g is

bounded away from 0, i.e.,

g(wi) ≥ cl for any wi. (74)

Then for any k ∈ N, k ≥ 1, there exists some constant Ck, depending on k, s.t.

(a) E

[(
1
Ni

)k
1{Ni > 0} | wi

]
≤ Ck

(nqncl)k
,

(b) E

[(
1
Ni

)k
1{Ni > 0}

]
≤ Ck

(nqncl)k
,
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2. Assume the graphon has a finite Kth moment, i.e.

E[g(w1, w2)
k] ≤ cku, for k = 1, 2, . . . ,K.

Then

E[(Ni − nqng(i))
2k] ≤ Ck(nqncu)

k

for k = 1, · · · ,K, where Ck is some constant depending on k.

Lemma E.2. Define ϕi as an i.i.d. random variable with constant variance. Define the conditional

expectation Qϕ
j = E

[
Apre

ij ϕi

qpre
n g0(i)

| wj

]
. Under Assumptions 1 and 3, then

1

n

n∑
i=1

(Zalt
i − π)ϕi =

1

n

n∑
i=1

(Ti − π)Qϕ
i +OP

(
1

√
n
√
nqpren

)
. (75)

Proof of Lemma E.2. We make use of the proof of Li and Wager (2022, Theorem 4). By reordering

the index, we have

1

n

n∑
i=1

(Zalt
i − π)ϕi =

1

n

n∑
i=1

∑n
j=1A

pre
ij (Tj − π)∑n

j=1A
pre
ij

ϕi =
1

n

n∑
j=1

(Tj − π)
∑
i ̸=j

Apre
ij ϕi∑n

k=1A
pre
ik

where

∑
i ̸=j

Apre
ij ϕi∑n

k=1A
pre
ik

=
∑
i ̸=j

Apre
ij ϕi

Ni
=
∑
i ̸=j

Apre
ij ϕi

(n− 1)qpren g0(i)
−
∑
i ̸=j

Apre
ij ϕi(Ni − (n− 1)qpren g0(i))

(n− 1)qpren g0(i)Ni
.

For the first term, for fixed j, given wj ,
Apre

ij ϕi

qpren g0(i)
are i.i.d.. Then we have

E

 1

n− 1

∑
i ̸=j

Apre
ij ϕi

qpren g0(i)
−Qϕ

j

2 =
1

n− 1
E

( Apre
ij ϕi

qpren g0(i)
−Qϕ

j

)2


≤ 1

n− 1
E

[(
Apre

ij ϕ
2
i

(qpren g0(i))2

)]
≤ C

(n− 1)qpren
. (76)

This implies that 1
n−1

∑
i ̸=j

Apre
ij ϕi

qpre
n g0(i)

can be well approximated by Qϕ
j with a small error of OP

(
1

nqpren

)
.

For the second term, we start by noting that

Apre
ij ϕi(Ni − (n− 1)qpren g0(i))

qpren g0(i)Ni
=
Apre

ij ϕi((Ni −Apre
ij + 1)− (n− 1)qpren g0(i))

qpren g0(i)(Ni −Apre
ij + 1)

. (77)

Conditional on w, (Ni − Apre
ij ) is distributed as a Binomial(n − 1, qpren g0(i)). By the property of

105



binomial distribution, for a random variable X ∼ Binomial(n, p), we have

E

(
1

X + 1

)
=
1− (1− p)n+1

(n+ 1)p
.

Thus, we have

E

[
(Ni −Apre

ij + 1)− (n− 1)qpren g0(i)

(n− 1)qpren g0(i)(Ni −Apre
ij + 1)

| w

]
=

1

(n− 1)qpren g0(i)
− E

[
1

Ni −Apre
ij + 1

| w

]

=
1

(n− 1)qpren g0(i)
− 1− (1− qpren g0(i))

n

nqpren g0(i)
=

1

n(n− 1)qpren g0(i)
+

1

n

(1− qpren g0(i))
n

qpren g0(i)

≤ 1

n(n− 1)qpren g0(i)
+

e−Cnqpre
n

nqpren g0(i)
≤ C

1

(nqpren )
2 . (78)

By Cauchy–Schwarz inequality and Lemma E.1,

E

((Ni −Apre
ij + 1)− (n− 1)qpren g0(i)

(n− 1)qpren g0(i)(Ni −Apre
ij + 1)

)2

| w


≤ 1

(n− 1)2(qpren g0(i))2

√
E

((
(Ni −Apre

ij + 1)− (n− 1)qpren g0(i)
)4)√√√√E

(
1

(Ni −Apre
ij + 1)4

)

≤C 1

((n− 1)qpren )
2

nqpren

(nqpren )
2 ≤ C

1

(nqpren )
3 . (79)

Let Bij =
Apre

ij ϕi(Ni−(n−1)qpre
n g0(i))

(n−1)qpre
n g0(i)Ni

. Then we bound the second moment:

E

∑
i ̸=j

Bij

2 =
∑
i ̸=j

E
[
B2

ij

]
+
∑
(i,k)

E [BijBkj ] .

For the diagonal term, we have

E
[
B2

ij

]
= E

Apre
ij ϕ

2
i

(
(Ni −Apre

ij + 1)− (n− 1)qpren g0(i)

(n− 1)qpren g0(i)(Ni −Apre
ij + 1)

)2
 ≤ C

1

n(nqpren )2

by (79). For the off-diagonal terms, conditional on w, Apre
ij , Apre

jk , Nj−(n−1)qpren g0(wj)
Nj

and Nk−(n−1)qpren g0(wk)
Nk

are all independent. Thus

E[BijBik] =E

[
(qpren )2g0(i, j)g0(i, k)ϕjϕkE

[
Nj − (n− 1)qpren g0(wj)

(n− 1)qpren g0(wj)Nj
| w
]
E

[
Nk − (n− 1)qpren g0(wk)

(n− 1)qpren g0(wk)Nk
| w
]]

≤C 1

n2(nqpren )2
,
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where the last inequality follows from (78). Combing the diagonal and off-diagonal terms, we have

E

∑
i ̸=j

Apre
ij ϕi(Ni − (n− 1)qpren g0(i))

(n− 1)qpren g0(i)Ni

2 ≤ C

(nqpren )2
. (80)

Combining (76) and (80), we get

E

∑
i ̸=j

Apre
ij

Ni
ϕi −Qϕ

j

2 ≤ C

nqpren
.

This implies that

1

n

n∑
j=1

(Tj − π)

∑
i ̸=j

Apre
ij ϕi∑

k ̸=i

Apre
ik

−Qϕ
j

 = OP

(
1

√
n
√
nqpren

)

and thus

1

n

n∑
i=1

(Zalt
i − π)ϕi =

1

n

n∑
i=1

(Ti − π)Qϕ
i +OP

(
1

√
n
√
nqpren

)
.

Define

S0
1 =

1

n

n∑
j=1

(Tj − π)
∑
i ̸=j

Apre
ij r0,i

(n− 1)qpren g0(i)

with E(S0
1) ≍ 1

nmax{qpre
n ,qpost

n } . In Lemma E.3 below, we analyze the order of 1
n

∑n
i=1(Z

alt
i −π)Mi.

Lemma E.3. Under Assumptions 1 and 3, we have

1

n

n∑
i=1

(Zalt
i − π)Mi =E(S0

1) + oP

(
1

nmax{qpren , qpostn }

)
+OP

(
1√
n

)
. (81)

Proof. See proof in Section F.5.

Now we are ready to prove Theorem E.1.

Proof of Theorem E.1. We start with deriving the probability limit of
(
Z̃alt⊤X

)−1
:

(
Z̃alt⊤X

)−1
=

1

det(Z̃alt⊤X)

∗ ∗ ∗
∗ d22 d23

∗ d32 d33
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where

d22 =

(
1

n

n∑
i=1

MiZ
alt
i

)
−

(
1

n

n∑
i=1

Mi

)(
1

n

n∑
i=1

Zalt
i

)
d23 = a23

d32 = −

(
1

n

n∑
i=1

TiZ
alt
i

)
+

(
1

n

n∑
i=1

Ti

)(
1

n

n∑
i=1

Zalt
i

)
d33 = a33

and

det(Z̃alt⊤X) = d33d22 − d32d23.

Let ∗ denote the terms that are not relevant to show Theorem E.1. We analyze the terms one by

one.

(1): d32. By Lemma E.2, we have

d32 =−

(
1

n

n∑
i=1

(Ti − π)(Zalt
i − π)

)
+

(
1

n

n∑
i=1

(Zalt
i − π)

)(
1

n

n∑
i=1

(Ti − π)

)

=−

(
1

n

n∑
i=1

(Ti − π)E

[
Apre

ij (Tj − π)

qpren g0(j)
| wi

]
+OP

(
1

√
n
√
nqpren

))

+

(
1

n

n∑
i=1

(Ti − π)E

[
Apre

ij

qpren g0(j)
| wi

]
+OP

(
1

√
n
√
nqpren

))
OP

(
1√
n

)

=OP

(
1

n
√
qpren

)
.

(2): 1
n

∑n
i=1(Z

alt
i − Z̄)ui. Similarly, by Lemma E.2, we have

1

n

n∑
i=1

(Zalt
i − Z̄alt)ui =

1

n

n∑
i=1

(Zalt
i − π)ui − (Z̄alt − π)

1

n

n∑
i=1

ui = OP

(
1√
n

)
.

We consider the remaining terms under Cases (a) and (b), respectively.

Case (a) (1): d22. By Lemma E.3, we have

d22 =

(
1

n

n∑
i=1

Mi(Z
alt
i − π)

)
−

(
1

n

n∑
i=1

Mi

)(
1

n

n∑
i=1

(Zalt
i − π)

)

=

(
1

n

n∑
i=1

(ξi + µr1,i)(Z
alt
i − π)

)
−

(
1

n

n∑
i=1

(ξi + µr1,i)

)(
1

n

n∑
i=1

(Zalt
i − π)

)
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+

(
1

n

n∑
i=1

(r0,i + r1,i − µr1,i)(Z
alt
i − π)

)
−

(
1

n

n∑
i=1

(r0,i + r1,i − µr1,i)

)(
1

n

n∑
i=1

(Zalt
i − π)

)

=

(
1

n

n∑
i=1

(Ti − π)E

[
Apre

ij (ξj + µr1,j)

qpren g0(j)
| wi

]
+OP

(
1

√
n
√
nqpren

))

−
(
E(ξi + µr1,i) +OP

(
1√
n

))(
1

n

n∑
i=1

(Ti − π)E

[
Apre

ij

qpren g0(j)
| wi

]
+OP

(
1

√
n
√
nqpren

))

+

(
1

n

n∑
i=1

(r0,i + r1,i − µr1,i)(Z
alt
i − π)

)
−OP

 1

n

√
qpostn

( 1

n

n∑
i=1

(Zalt
i − π)

)

=E(S0
1) +OP

(
1√
n

)
+ oP

(
1

nmax{qpren , qpostn }

)
.

(2): d23. By (29), we can show d23 = −Cov(Ti, ξi + µr1,i) +OP

(
1√
n

)
.

(3): det(Z̃alt⊤X). By combining the results above, we have

det(Z̃alt⊤X) = d33d22 − d32d23

=

(
π(1− π) +OP

(
1√
n

))(
E(S0

1) +OP

(
1√
n

)
+ oP

(
1

nmax{qpren , qpostn }

))
−
(
−Cov(Ti, ξi + µr1,i) +OP

(
1√
n

))
OP

(
1

n
√
qpren

)

=π(1− π)E(S0
1) +OP

(
1√
n

)
+ oP

(
1

nmax{qpren , qpostn }

)
.

Therefore, by the closed form of IV estimates, we can show that

β̂alt1 − β1 =
d22

1
n

∑n
i=1(Ti − T̄ )ui + d23

1
n

∑n
i=1(Z

alt
i − Z̄alt)ui

d33d22 − d32d23

=

(
E(S0

1) +OP

(
1√
n

))
OP

(
1√
n

)
+
(
−Cov(Ti, ξi + µr1,i) +OP

(
1√
n

))
OP

(
1√
n

)
π(1− π)E(S0

1) +OP

(
1√
n

)
=

OP

(
1√
n

)
π(1− π)E(S0

1) +OP

(
1√
n

) ,
and

β̂alt2 − β2 =
d33

1
n

∑n
i=1(Z

alt
i − Z̄alt)ui + d32

1
n

∑n
i=1(Ti − T̄ )ui

d33d22 − d32d23

=

(
π(1− π) +OP

(
1√
n

))
OP

(
1√
n

)
+OP

(
1

n
√

qpren

)
OP

(
1√
n

)
π(1− π)E(S0

1) +OP

(
1√
n

)
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=
OP

(
1√
n

)
π(1− π)E(S0

1) +OP

(
1√
n

) .
Recall that E(S0

1) ≍ 1
nmax{qpre

n ,qpost
n } . We can conclude that with max{qpren , qpostn } ≺ 1√

n
, then

β̂alt − β = OP
(√
nmax{qpren , qpostn }

)
.

Case (b) (1) d22. By Lemma E.3, we have

d22 =

(
1

n

n∑
i=1

MiZ
alt
i

)
−

(
1

n

n∑
i=1

Mi

)(
1

n

n∑
i=1

Zalt
i

)
=

(
1

n

n∑
i=1

Mi(Z
alt
i − π)

)
−

(
1

n

n∑
i=1

Mi

)(
1

n

n∑
i=1

(Zalt
i − π)

)

=

(
1

n

n∑
i=1

µr1,i(Z
alt
i − π)

)
−

(
1

n

n∑
i=1

µr1,i

)(
1

n

n∑
i=1

(Zalt
i − π)

)

+

(
1

n

n∑
i=1

(r0,i + r1,i − µr1,i)(Z
alt
i − π)

)
−

(
1

n

n∑
i=1

(r0,i + r1,i − µr1,i)

)(
1

n

n∑
i=1

(Zalt
i − π)

)

=

(
1

n

n∑
i=1

(Ti − π)E

[
Apre

ij µr1,j

qpren g0(j)
| wi

]
+OP

(
1

√
n
√
nqpren

))
−
(
E(µr1,i) +OP

(
1

√
nnqpostn

))(
1

n

n∑
i=1

(Zalt
i − π)

)

+

(
1

n

n∑
i=1

(r0,i + r1,i − µr1,i)(Z
alt
i − π)

)
−OP

 1

n

√
qpostn

( 1

n

n∑
i=1

(Zalt
i − π)

)

= E(S0
1) +OP

(
1

√
nnqpostn

)
+ oP

(
1

nmax{qpren , qpostn }

)
.

(2) d23. By (29), we can show d23 = OP

(
1

n
√

qpost
n

)
.

(3) det(Z̃alt⊤X). By combining the results above, we have

det(Z̃alt⊤X) = d33d22 − d32d23

=

(
π(1− π) +OP

(
1√
n

))(
E(S0

1) +OP

(
1

√
nnqpostn

)
+ oP

(
1

nmax{qpren , qpostn }

))

−OP

 1

n

√
qpostn

OP

(
1

n
√
qpren

)

= π(1− π)E(S0
1) +OP

(
1

√
nnqpostn

)
+ oP

(
1

nmax{qpren , qpostn }

)
.

Therefore, we have

β̂alt1 − β1 =
d22

1
n

∑n
i=1(Ti − T̄ )ui + d23

1
n

∑n
i=1(Z

alt
i − Z̄alt)ui

d33d22 − d32d23
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=

(
E(S0

1) +OP

(
1√

nnqpost
n

)
+ oP

(
1

nmax{qpren ,qpost
n }

))
OP

(
1√
n

)
+OP

(
1

n
√

qpost
n

)
OP

(
1√
n

)
π(1− π)E(S0

1) +OP

(
1√

nnqpost
n

)
+ oP

(
1

nmax{qpren ,qpost
n }

)
=

OP

(
1√

nnqpost
n

)
π(1− π)E(S0

1) +OP

(
1√

nnqpost
n

)
+ oP

(
1

nmax{qpren ,qpost
n }

) .
Therefore, with max{qpren , qpostn } ≺

√
nqpostn , then

β̂alt1 − β1 = OP

 1√
n
max

max{qpren , qpostn }√
qpostn

, 1


 .

Then,

β̂alt2 − β2 =
d33

1
n

∑n
i=1(Z

alt
i − Z̄alt)ui + d32

1
n

∑n
i=1(Ti − T̄ )ui

d33d22 − d32d23

=

(
π(1− π) +OP

(
1√
n

))
OP

(
1√
n

)
+OP

(
1

n
√

qpren

)
OP

(
1√
n

)
π(1− π)E(S0

1) +OP

(
1√

nnqpost
n

)
+ oP

(
1

nmax{qpren ,qpost
n }

)
=

OP

(
1√
n

)
π(1− π)E(S0

1) +OP

(
1√

nnqpost
n

)
+ oP

(
1

nmax{qpren ,qpost
n }

) .
Therefore, with nmax{qpren , qpostn } ≺

√
n, then

β̂alt2 − β2 = OP
(√
nmax{qpren , qpostn }

)
.

Therefore, β̂alt0 has the same convergence rate as β̂alt2 , such that when nmax{qpren , qpostn } ≺
√
n,

β̂alt0 − β0 = OP
(√
nmax{qpren , qpostn }

)
.

Proof of Corollary E.1. Corollary E.1 is a direct result of Theorem E.1 under qpren ≼ qpostn .

E.3 Simulation results

In this subsection, we provide simulation results to support Theorem E.1. The networks and

outcomes are generated in the same fashion as in Section 5.2. Table 6 presents the results for

sparsity levels qpren = qpostn = qn, with qn ∈ {n−2/3, n−1/3, n−1/5} and sample sizes n ∈ {200, 800}.
We report the average of the estimates under “β̂alt,” along with the standard deviation across

the simulations under “std(β̂alt).” It demonstrates that the estimates are consistent if the
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standard deviation decreases with larger sample sizes. We observe that the estimates are

consistent for all designs when qn = n−2/3. However, when qn exceeds n−1/2, β̂alt is no longer

consistent for Designs 1 and 2. For Designs 3 and 4, β̂alt1 remains consistent, while β̂alt2 is not.

Table 6: Simulation results of normalized SSIV in (73)

qn = n−2/3 qn = n−1/3 qn = n−1/5

Design β β̂alt std(β̂alt) β̂alt std(β̂alt) β̂alt std(β̂alt)
n = 200

1 β1 = 1 1.003 0.082 1.001 0.099 1.004 0.209
β2 = 0.5 0.476 0.192 0.486 0.639 0.467 1.367

2 β1 = 1 1.001 0.082 0.990 0.131 0.935 0.386
β2 = 0.5 0.506 0.229 0.606 0.908 1.005 2.528

3 β1 = 1 1.000 0.082 0.998 0.084 0.997 0.083
β2 = 0.5 0.518 0.164 0.503 0.474 0.515 0.759

4 β1 = 1 1.000 0.082 1.001 0.087 1.001 0.092
β2 = 0.5 0.496 0.211 0.494 0.797 0.509 1.701

n = 800
1 β1 = 1 1.003 0.039 1.002 0.113 1.006 0.336

β2 = 0.5 0.488 0.115 0.483 0.716 0.466 1.937
2 β1 = 1 1.000 0.040 0.986 0.135 0.841 2.325

β2 = 0.5 0.499 0.149 0.605 0.888 1.479 13.681
3 β1 = 1 0.999 0.041 1.000 0.041 1.000 0.043

β2 = 0.5 0.505 0.105 0.499 0.370 0.491 0.637
4 β1 = 1 1.000 0.040 0.999 0.043 1.000 0.047

β2 = 0.5 0.500 0.142 0.493 0.796 0.496 2.075

Note: Simulation results for the IV estimators using the normalized SSIV with n ∈ {200, 800},
qn ∈ {n−2/3, n−1/3, n−1/5}, and 5, 000 replications.

F Proof of Lemmas

F.1 Auxiliary Lemmas

Lemma F.1. Under Assumption 1, we have for c ∈ {2, 4},

E [(r0,i + r1,i − µr1,i)
c] = O

(
1

(nqpostn )c/2

)
. (82)

Proof of Lemma F.1. We only show it for c = 4 since the argument for c = 2 is analogous and we

omit it for brevity. By Cr inequality, we have

E
[
(r0,i + r1,i − µr1,i)

4
]
≤ 33 ·

[
E
(
r40,i
)
+ E

(
r41,i
)
+ E

(
µ4r1,i

)]
. (83)
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For the first term, by the Multinomial Theorem, we have

E
[
r40,i | Ti, wi

]
=

ξ4i
(n− 1)4

E

∑
j ̸=i

Rij

4

| Ti, wi

 =
ξ4i

(n− 1)4
E

 ∑
(j1,j2):j1 ̸=j2

R2
ij1R

2
i2 | Ti, wi

 .
where the last equality follows from E (Rij | Ti, wi) = 0 such that any product involving Rij with a

multiplicity of 1 has a mean of zero. Recall that

Rijk =
Apost

ijk
Tjjk

E(Apost
ijk

Tjk | Ti, wi)
−

Apost
ijk

E(Aijk | Ti, wi)
=
Apost

ijk

qpostn

(
Tjk

E(f1(i, jk)Tjk | Ti, wi)
− 1

f1(i)

)
.

Therefore, E
[
r40,i

]
≤ C

(nqpost
n )2

. For the second term in (83), define Xij = UijWij and Vij =W 2
ij . By

AM–GM inequality, we have

r41,i =
1

(n− 1)8

−
∑
j ̸=i

Xij

θ∗i (y)
2
+

2θ∗i (x)

θ∗i (y)
3

∑
j ̸=i

Vij −
∑

(j,l):j ̸=l

UijWik

θ∗i (y)
2
+

2θ∗i (x)

θ∗i (y)
3

∑
(j,l):j ̸=l

WijWik

4

≤ 43

(n− 1)8

∑
j ̸=i

Xij

θ∗i (y)
2

4

+

2θ∗i (x)

θ∗i (y)
3

∑
j ̸=i

Vij

4

+

 ∑
(j,l):j ̸=l

UijWil

θ∗i (y)
2

4

+

2θ∗i (x)

θ∗i (y)
3

∑
(j,l):j ̸=l

WijWil

4 .
(84)

For the first two terms in (84), the order depends on the number of indexes. We take Xij for

example:

E

∑
j ̸=i

Xij

4

| Ti, wi

 = E

 ∑
K∈{1,··· ,4}
a1+···+aK=4

∑
(j1,··· ,jK)
all distinct

Xa1

ij1
· · ·XaK

ijK
| Ti, wi

 .
Then for any K,

E

 ∑
(j1,··· ,jK)
all distinct

Xa1

ij1
· · ·XaK

ijK
| Ti, wi

 =
∑

(j1,··· ,jK)
all distinct

E
[
Xa1

ij1
| Ti, wi

]
· · ·E

[
XaK

ijK
| Ti, wi

]
,

where for any k,

E
[
Xak

ijk
| Ti, wi

]
≤ 3ak−1 ·

 pnE(f1(i, jk)Tjk | Ti, wi)

+pak+1
n f1(i) {E(f1(i, jk)Tjk | Ti, wi) + Tjkf1(i)}

ak

+p2ak
n E(f1(i, jk)Tjk | Ti, wi)

akf1(i)
ak

 .
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Taking expectation over Ti and wi, we have

E

 ∑
(j1,··· ,jK)
all distinct

Xa1

ij1
· · ·XaK

ijK

 ≤ C(n− 1)KpKn .

Therefore, the upper bound depends on the largest K, and thus we have

E

∑
j ̸=i

Xij

4 ≤ Cn4(qpostn )4.

For the third term in (84),

E

 ∑
(j,l):j ̸=l

UijWil

c

| Ti, wi

 =E

 ∑
(j1,l1)

all distinct

· · ·
∑
(jc,lc)

all distinct

Uij1Wil1 · · ·UijcWilc | Ti, wi



=E


∑

K∈{2,··· ,2c}
a1+···+aK=c
b1+···+bK=c

∑
(j1,··· ,jK)
all distinct

(Ua1

ij1
W b1

ij1
) · · · (UaK

ijK
W bK

ijK
) | Ti, wi

 .

For any K,

E

 ∑
(j1,··· ,jK)
all distinct

Ua1

ij1
· · ·UaK

ijK
W b1

ij1
· · ·W bK

ijK
| Ti, wi

 =
∑

(j1,··· ,jK)
all distinct

E
[
Ua1

ij1
W b1

ij1
| Ti, wi

]
· · ·E

[
UaK

ijK
W bK

ijK
| Ti, wi

]
.

If ak + bk = 1, then

E
[
Uak

ijk
W bk

ijk
| Ti, wi

]
= 0.

If ak + bk > 1, then

E
[
Uak

ijk
W bk

ijk
| Ti, wi

]
≤ 2ak+bk−2E

[
(AijTj − E(AijTj |Ti, wi)

ak)1(ak>0)
(
Aij − E(Aij |Ti, wi)

bk
)1(bk>0)

|Ti, wi

]
.

The order depends on the largest K such that for any k ≤ K we have ak + bk > 1. Therefore, we

have

E

∑
j ̸=k

UijWik

4 ≤ C(nqpostn )4.

The argument of the last term is analogous to that of the third term, so we omit it here. By

114



combining these results, we have E
[
r41,i

]
≤ C

(nqpost
n )4

. Also, E
[
µ4r1,i

]
= O

(
1

(nqpost
n )4

)
by definition in

(19). Therefore, we conclude that

E
[
(r0,i + r1,i − µr1,i)

4
]
= O

(
1

(nqpostn )2

)
.

Lemma F.2. Define ai and bi as any functions of Ti and wi with constant variance. Under

Assumption 1, we have for any i ̸= j,

Cov (ai(r0,i + r1,i − µr1,i), bj(r0,j + r1,j − µr1,j)) = O

(
1

n

)
, (85)

Cov
(
ai(r0,i + r1,i − µr1,i)

2, bj(r0,j + r1,j − µr1,j)
2
)
= O

(
1

n3(qpostn )2

)
+O

(
1

n2

)
. (86)

We write down the closed form of r0,ir1,i, r21,i and r1,i1r1,i2 for reference:

r0,ir1,i =
1

(n− 1)3

 ξi
∑
k ̸=i

Rik

∑
l ̸=i

(
−UilWil

θ∗
i (y)

2 + 2θ∗
i (x)

θ∗
i (y)

3W
2
il

)
+ξi

∑
k ̸=i

Rik

∑
(l,h):l ̸=h

(
−UilWih

θ∗
i (y)

2 + 2θ∗
i (x)

θ∗
i (y)

3UilWih

)
 ,

where r0,ir1,i has at most three indexes. Next,

r21,i =
1

(n− 1)4



∑
k ̸=i

(
−UikWik

θ∗
i (y)

2 + 2θ∗
i (x)

θ∗
i (y)

3W
2
ik

)2
+

∑
(k,l):k ̸=l

(
−UikWik

θ∗
i (y)

2 + 2θ∗
i (x)

θ∗
i (y)

3W
2
ik

)(
−UilWil

θ∗
i (y)

2 + 2θ∗
i (x)

θ∗
i (y)

3W
2
il

)
+

∑
(k,l):k ̸=l

(
−UikWil

θ∗
i (y)

2 + 2θ∗
i (x)

θ∗
i (y)

3WikWil

)2
+

∑
(k,l,h)

all distinct

(
−UikWil

θ∗
i (y)

2 + 2θ∗
i (x)

θ∗
i (y)

3WikWil

)(
−UikWih

θ∗
i (y)

2 + 2θ∗
i (x)

θ∗
i (y)

3WikWih

)
+

∑
(k,l,h,m)
all distinct

(
−UikWil

θ∗
i (y)

2 + 2θ∗
i (x)

θ∗
i (y)

3WikWil

)(
−UihWim

θ∗
i (y)

2 + 2θ∗
i (x)

θ∗
i (y)

3WihWim

)
+2
∑
k ̸=i

(
−UikWik

θ∗
i (y)

2 + 2θ∗
i (x)

θ∗
i (y)

3W
2
ik

) ∑
(k,l):k ̸=l

(
−UikWil

θ∗
i (y)

2 + 2θ∗
i (x)

θ∗
i (y)

3WikWil

)



, (87)
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where r21,i has at most 4 different indexes. Last,

r1,i1r1,i2 =
1

(n− 1)4



∑
l ̸=i1

(
−Ui1lWi1l

θ∗
i1
(y)2 +

2θ∗
i1
(x)

θ∗
i1
(y)3W

2
i1l

) ∑
l ̸=i2

(
−Ui2lWi2l

θ∗
i2
(y)2 +

2θ∗
i2
(x)

θ∗
i2
(y)3W

2
i2l

)
+
∑
l ̸=i1

(
−Ui1lWi1l

θ∗
i1
(y)2 +

2θ∗
i1
(x)

θ∗
i1
(y)3W

2
i1l

) ∑
(l,h):l ̸=h

(
−Ui2lWi2h

θ∗
i2
(y)2 +

2θ∗
i2
(x)

θ∗
i2
(y)3Wi2lWi2h

)
+

∑
(l,h):l ̸=h

(
−Ui1lWi1h

θ∗
i1
(y)2 +

2θ∗
i1
(x)

θ∗
i1
(y)3UilWih

) ∑
l ̸=i2

(
−Ui2lWi2l

θ∗
i2
(y)2 +

2θ∗
i2
(x)

θ∗
i2
(y)3W

2
i2l

)
+

∑
(l,h):l ̸=h

(
−Ui1lWi1h

θ∗
i1
(y)2 +

2θ∗
i1
(x)

θ∗
i1
(y)3Wi1lWi1h

) ∑
(l,h):l ̸=h

(
−Ui2lWi2h

θ∗
i2
(y)2 +

2θ∗
i2
(x)

θ∗
i2
(y)3Wi2lWi2h

)


,

where r1,i1r1,i2 has at most 4 different indexes.

Proof of Lemma F.2. To show (85), we can rewrite it as

Cov (ai(r0,i + r1,i − µr1,i), bj(r0,j + r1,j − µr1,j))

=Cov (air0,i, bjr0,j) + Cov (air0,i, bj(r1,j − µr1,j)) + Cov (ai(r1,i − µr1,i), bjr0,j)

+ Cov (ai(r1,i − µr1,i), bj(r1,j − µr1,j)) .

We analyze each term one by one.

(a) The covariance is nonzero when Rik and Rjl share common second index:

Cov (air0,i, bjr0,j) =
1

(n− 1)2

∑
k ̸=i,j

Cov (aiξiRik, bjξjRjk) ≤ C
n(qpostn )2

n2(qpostn )2
= O

(
1

n

)
.

(b) The covariance is nonzero when both sides share common index:

Cov (air0,i, bj(r1,j − µr1,j))

=
1

(n− 1)3


∑

k ̸=i,j

Cov
(
aiξiRik, bj

(
−UjkWjk

θ∗
j (y)

2 +
2θ∗

j (x)

θ∗
j (y)

3W
2
jk

))
+
∑

k ̸=i,j

Cov
(
aiξiRik, bj

(
−UjkWji

θ∗
j (y)

2 +
2θ∗

j (x)

θ∗
j (y)

3WjkWji

))
− 1

n− 1
Cov (aiξiRij , bjµr1,j)

≤C1
n(qpostn )2

(nqpostn )3
+ C2

n(qpostn )3

(nqpostn )3
+ C3

1

n

1

nqpostn

= O

(
1

n2qpostn

)
.

(c) The covariance is nonzero when both sides share a common index:

Cov (ai(r1,i − µr1,i), bj(r1,j − µr1,j))

= Cov (air1,i, bjr1,j)− Cov (air1,i, bjµr1,j)− Cov (aiµr1,i, bjr1,j) + Cov (aiµr1,i, bjµr1,j)
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=
1

(n− 1)4



∑
k ̸=i,j

Cov
(
ai

(
−UikWik

θ∗
i (y)

2 + 2θ∗
i (x)

θ∗
i (y)

3W
2
ik

)
, bj

(
−UjkWjk

θ∗
j (y)

2 +
2θ∗

j (x)

θ∗
j (y)

3W
2
jk

))
+
∑

k ̸=i,j

Cov
(
ai

(
−UikWik

θ∗
i (y)

2 + 2θ∗
i (x)

θ∗
i (y)

3W
2
ik

)
, bj

(
−UjkWji

θ∗
j (y)

2 +
2θ∗

j (x)

θ∗
j (y)

3WjkWji

))
+
∑

k ̸=i,j

Cov
(
ai

(
−UikWij

θ∗
i (y)

2 + 2θ∗
i (x)

θ∗
i (y)

3WikWij

)
, bj

(
−UjkWjk

θ∗
j (y)

2 +
2θ∗

j (x)

θ∗
j (y)

3W
2
jk

))
+

∑
(k,l):k ̸=l

Cov
(
ai

(
−UikWil

θ∗
i (y)

2 + 2θ∗
i (x)

θ∗
i (y)

3WikWil

)
, bj

(
−UjkWjl

θ∗
j (y)

2 +
2θ∗

j (x)

θ∗
j (y)

3WjkWjl

))


− 1

(n− 1)2

[
Cov

(
ai

(
−UijWij

θ∗i (y)
2
+

2θ∗i (x)

θ∗i (y)
3
W 2

ij

)
, bjµr1,j

)
+Cov

(
aiµr1,i, bj

(
−UjiWji

θ∗j (y)
2
+

2θ∗j (x)

θ∗j (y)
3
W 2

ji

))]

≤ C1
n(qpostn )2

n4(qpostn )4
+ C2

n(qpostn )3

n4(qpostn )4
+ C3

n2(qpostn )4

n4(qpostn )4
+ C4

qpostn

n2(qpostn )2npn
= O

(
1

n2

)
+O

(
1

n3(qpostn )2

)
.

(88)

Therefore, by combining results in (a)-(c), we can conclude that

Cov (ai(r0,i + r1,i − µr1,i), bj(r0,j + r1,j − µr1,j)) = O

(
1

n

)
.

To show (86), we decompose it as

Cov
(
ai(r0,i + r1,i − µr1,i)

2, bj(r0,j + r1,j − µr1,j)
2
)

= Cov
(
air

2
0,i, bjr

2
0,j

)
+Cov

(
air

2
0,i, bj(r1,j − µr1,j)

2
)
+Cov

(
ai(r1,i − µr1,i)

2, bjr
2
0,j

)
+ 2Cov

(
air

2
0,i, bjr0,j(r1,j − µr1,j)

)
+ 2Cov

(
air0,i(r1,i − µr1,i), bjr

2
0,j

)
+ 2Cov

(
ai(r1,i − µr1,i)

2, bjr0,j(r1,j − µr1,j)
)
+ 2Cov

(
air0,i(r1,i − µr1,i), bj(r1,j − µr1,j)

2
)

+ 4Cov (air0,i(r1,i − µr1,i), bjr0,j(r1,j − µr1,j)) + Cov
(
ai(r1,i − µr1,i)

2, bj(r1,j − µr1,j)
2
)

We analyze each term one by one.

(a) By definition of Rik, any index pair that appears once would have zero covariance:

Cov
(
air

2
0,i, bjr

2
0,j

)
=

1

(n− 1)4
Cov

aiξ2i
∑

k ̸=i

R2
ik +

∑
(k,l):k ̸=l

RikRil

 , bjξ
2
j

∑
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R2
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∑
(k,l):k ̸=l

RjkRjl



=
1

(n− 1)4
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k ̸=i,j
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(
aiξ

2
iR

2
ik, bjξ

2
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2
jk

)
+
∑
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Cov
(
aiξ

2
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2
ik, bjξ

2
jRjkRji
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∑
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aiξ

2
iRikRij , bjξ

2
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2
jk

)
+

∑
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aiξ

2
iRikRil, bjξ

2
jRjkRjl

)


≤ C1n(q
post
n )2 + C2n(q

post
n )3 + C3n

2(qpostn )4

n4(qpostn )4
= O

(
1

n3(qpostn )2

)
+O

(
1

n2

)
.

(b) By decomposition, we have

Cov
(
air

2
0,i, bj(r1,j − µr1,j)

2
)
= Cov

(
air

2
0,i, bjr

2
1,j

)
− 2Cov

(
air

2
0,i, bjr1,jµr1,j

)
+Cov

(
air

2
0,i, bjµ

2
r1,j

)
.
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For the first term, r20,i has at most two indexes and r21,i has at most four indexes. To have

nonzero covariance, both sides should share a common index or for each side, the multiplicity of

each pair index should be larger than 1. Below we discuss each possibility:

(1) if there is only one (second) index, the covariance is bounded above by C n(qpost
n )2

(nqpost
n )6

;

(2) if there are two (second) indexes, the covariance is bounded above by C n2(qpost
n )4

(nqpost
n )6

;

(3) if there are three (second) indexes, the covariance is bounded above by C n3(qpost
n )5

(nqpost
n )6

.

Therefore, Cov
(
air

2
0,i, bjr

2
1,j

)
= O

(
1

n5(qpost
n )4

)
+O

(
1

n3qpost
n

)
. For the second term,

Cov
(
air

2
0,i, bjr1,jµr1,j

)
=

1

(n− 1)4


∑

k ̸=i,j

Cov
(
aiξ

2
iR

2
ik, bjµr1,j

(
−UjkWjk

θ∗
j (y)

2 +
2θ∗

j (x)

θ∗
j (y)

3W
2
jk

))
+

∑
(k,l):k ̸=l

Cov
(
aiξ

2
iRikRil, bjµr1,j

(
−UjkWjl

θ∗
j (y)

2 +
2θ∗

j (x)

θ∗
j (y)

3WjkWjl

))


≤C1
n(qpostn )2

n4(qpostn )4
1

nqpostn

+ C2
n2(qpostn )4

n4(qpostn )4
1

nqpostn

= O

(
1

n4(qpostn )3

)
+O

(
1

n3qpostn

)
.

For the last term,

Cov
(
air

2
0,i, bjµ

2
r1,j

)
=

1

(n− 1)2
Cov

(
aiξ

2
iR

2
ij , bjµ

2
r1,j

)
= O

(
1

n4(qpostn )3

)
.

To conclude,

Cov
(
air

2
0,i, bj(r1,j − µr1,j)

2
)
= O

(
1

n4(qpostn )3

)
+O

(
1

n3qpostn

)
.

(c) By definition of Rik, any index pair that appears once would have zero covariance:

Cov
(
air

2
0,i, bjr0,j(r1,j − µr1,j)

)
= Cov

(
air

2
0,i, bjr0,jr1,j

)
− Cov

(
air

2
0,i, bjr0,jµr1,j

)

=
1

(n− 1)5



∑
(k,l):k ̸=l

Cov
(
aiξ

2
iR

2
ik, bjξjRjk

(
−UjlWjl

θ∗
j (y)

2 +
2θ∗

j (x)

θ∗
j (y)

3W
2
jl

))
+

∑
(k,l):k ̸=l

Cov
(
aiξ

2
iR

2
ik, bjξjRjl

(
−UjlWjk

θ∗
j (y)

2 +
2θ∗

j (x)

θ∗
j (y)

3WjlWjk

))
+

∑
(k,l):k ̸=l

Cov
(
aiξ

2
iRikRil, bjξjRjk

(
−UjlWjl

θ∗
j (y)

2 +
2θ∗

j (x)

θ∗
j (y)

3W
2
jl

))
+

∑
(k,l):k ̸=l

Cov
(
aiξ

2
iRikRil, bjξjRjk

(
−UjkWjl

θ∗
j (y)

2 +
2θ∗

j (x)

θ∗
j (y)

3WjkWjl

))


− 1

(n− 1)3

∑
k ̸=i,j

Cov
(
aiξ

2
iR

2
ik, bjξjµr1,jRjk

)
+
∑
k ̸=i,j

Cov
(
aiξ

2
iRikRij , bjξjµr1,jRjk

)
≤ C1n

2(qpostn )3

(nqpostn )5
+ C2

n(qpostn )2

(nqpostn )3
1

nqpostn

= O

(
1

n3(qpostn )2

)
.
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(d) By decomposition, we have:

Cov
(
ai(r1,i − µr1,i)

2, bjr0,j(r1,j − µr1,j)
)
= Cov

(
air

2
1,i, bjr0,jr1,j

)
− Cov

(
air

2
1,i, bjµr1,jr0,j

)
− 2Cov (air1,iµr1,i, bjr0,j(r1,j − µr1,j)) + Cov

(
aiµ

2
r1,i, bjr0,j(r1,j − µr1,j)

)
.

For the first term Cov
(
air

2
1,i, bjr0,jr1,j

)
, r21,i has at most 4 different indexes, and r0,jr1,j has at

most 3 different indexes. We discuss all possibilities:

(1) if there is only one (second) index, the covariance is bounded above by C n(qpost
n )2

(nqpost
n )7

;

(2) if there are only two (second) indexes, the covariance is bounded above by C n2(qpost
n )3

(nqpost
n )7

;

(3) if there are only three (second) indexes, the covariance is bounded above by C n3(qpost
n )4

(nqpost
n )7

.

Therefore, Cov
(
air

2
1,i, bjr0,jr1,j

)
= O

(
1

n4(qpost
n )3

)
. For the second term, r0,j has 1 index, and

thus

Cov
(
air

2
1,i, bjµr1,jr0,j

)
≤ C

n2(qpostn )3

(nqpostn )5
1

nqpostn

= O

(
1

n4(qpostn )3

)
.

For the third term, r1,i has at most 2 different indexes, and thus there are two possibilities for

Cov (aiµr1,ir1,i, bjr0,jr1,j):

(1) if there is only one (second) index, the covariance is bounded above by C n(qpost
n )2

(nqpost
n )6

;

(2) if there are two (second) indexes, the covariance is bounded above by C n2(qpost
n )3

(nqpost
n )6

.

Therefore, Cov (aiµr1,ir1,i, bjr0,jr1,j) = O
(

1
n4(qpost

n )3

)
. Moreover, we have

Cov (aiµr1,ir1,i, bjµr1,jr0,j)

=
1

(n− 1)3


∑

k ̸=i,j

Cov
(
aiµr1,i

(
−UikWik

θ∗
i (y)

2 + 2θ∗
i (x)

θ∗
i (y)

3W
2
il

)
, bjµr1,jξjRjk

)
+
∑

k ̸=i,j

Cov
(
aiµr1,i

(
−UikWij

θ∗
i (y)

2 + 2θ∗
i (x)

θ∗
i (y)

3UikWij

)
, bjµr1,jξjRjk

)
 = O

(
1

n4(qpostn )3

)
.

Therefore, we can conclude that

Cov
(
ai(r1,i − µr1,i)

2, bjr0,j(r1,j − µr1,j)
)
= O

(
1

n4(qpostn )3

)
.

(e) By decomposition, we have

Cov (air0,i(r1,i − µr1,i), bjr0,j(r1,j − µr1,j)) = Cov (air0,ir1,i, bjr0,jr1,j)

− Cov (air0,ir1,i, bjr0,jµr1,j)− Cov (air0,iµr1,i, bjr1,j) + Cov (air0,iµr1,i, bjr0,jµr1,j)
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=
1

(n− 1)6



∑
(k,l,h)

Cov
(
aiξiRik

(
−UilWil

θ∗
i (y)

2 + 2θ∗
i (x)

θ∗
i (y)

3W
2
il

)
, bjξjRjk

(
−UjhWjh

θ∗
j (y)

2 +
2θ∗

j (x)

θ∗
j (y)

3W
2
jh

))
+
∑

(k,l,h)

Cov
(
aiξiRik

(
−UilWil

θ∗
i (y)

2 + 2θ∗
i (x)

θ∗
i (y)

3W
2
il

)
, bjξjRjh

(
−UjkWjh

θ∗
j (y)

2 +
2θ∗

j (x)

θ∗
j (y)

3UjkWjh

))
+
∑

(k,l,h)

Cov
(
aiξiRik

(
−UikWil

θ∗
i (y)

2 + 2θ∗
i (x)

θ∗
i (y)

3UikWil

)
, bjξjRjl

(
−UjhWjh

θ∗
j (y)

2 +
2θ∗

j (x)

θ∗
j (y)

3W
2
jh

))
+
∑

(k,l,h)

Cov
(
aiξiRik

(
−UilWih

θ∗
i (y)

2 + 2θ∗
i (x)

θ∗
i (y)

3UilWih

)
, ξjRjk

(
−UjlWjh

θ∗
j (y)

2 +
2θ∗

j (x)

θ∗
j (y)

3UjlWjh

))



− 1

(n− 1)4


∑
(k,l)

Cov
(
aiξiRik

(
−UilWil

θ∗
i (y)

2 + 2θ∗
i (x)

θ∗
i (y)

3W
2
il

)
, bjµr1,jξjRjl

)
+
∑
(k,l)

Cov
(
aiξiRil

(
−UikWil

θ∗
i (y)

2 + 2θ∗
i (x)

θ∗
i (y)

3UikWil

)
, bjµr1,jξjRjk

)


− 1

(n− 1)4


∑
(k,l)

Cov
(
aiµr1,iξiRik, bjξjRjk

(
−UjlWjl

θ∗
j (y)

2 +
2θ∗

j (x)

θ∗
j (y)

3W
2
jl

))
+
∑
(k,l)

Cov
(
aiµr1,iξiRik, bjξjRjl

(
−UjkWjl

θ∗
j (y)

2 +
2θ∗

j (x)

θ∗
j (y)

3UjkWjl

))


+
1

(n− 1)2

∑
k ̸=i,j

Cov (aiµr1,iξiRik, bjµr1,jξjRjk)

=O

(
n3(qpostn )4

n6p6n

)
+O

(
n2(qpostn )3

n4(qpostn )4
1

npn

)
+O

(
n(qpostn )2

n2(qpostn )2
1

n2(qpostn )2

)
= O

(
1

n3(qpostn )2

)
.

(f) By definition of Rik, any index pair that appears once would have zero covariance.

Cov
(
ai(r1,i − µr1,i)

2, bj(r1,j − µr1,j)
2
)

=Cov
(
air

2
1,i, bjr

2
1,j

)
− 2Cov

(
air

2
1,i, bjr1,jµr1,j

)
− 2Cov

(
air1,iµr1,i, bjr

2
1,j

)
+Cov

(
air

2
1,i, bjµ

2
r1,j

)
+Cov

(
aiµ

2
r1,i, bjr

2
1,j

)
+ 4Cov (air1,iµr1,i, bjr1,jµr1,j)

− 2Cov
(
aiµr1,ir1,i, bjµ

2
r1,j

)
− 2Cov

(
aiµ

2
r1,i, bjµr1,jr1,j

)
.

For Cov
(
air

2
1,i, bjr

2
1,j

)
, by the definition of in r21,i in (87), the order depends on how many

indexes we have. We consider each possible case:

(1) for the case with 1 index, the covariance term is bounded above by C 1
n(nqpost

n )6
;

(2) for the case with 2 indexes, the covariance term is bounded above by C 1
n6(qpost

n )4
;

(3) for the case with 3 indexes, the covariance term is bounded above by C 1
n5(qpost

n )2
;

(4) for the case with 4 indexes, the covariance term is bounded above by C 1
n4 .

For the second term Cov
(
air

2
1,i, bjr1,jµr1,j

)
, r1,j has at most 2 different indexes, and the order

depends on how many indexes. We consider each possible case:

(1) for the case with 1 index, the covariance term is bounded above by C n(qpost
n )2

(nqpost
n )7

;

(2) for the case with 2 indexes, the covariance term is bounded above by C n2(qpost
n )3

(nqpost
n )7

;

(3) for the case with 3 indexes, the covariance term is bounded above by C n3p5
n

(nqpost
n )7

.
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Therefore Cov
(
air

2
1,i, bjr

2
1,j

)
= O

(
1

n5(qpost
n )4

)
+O

(
1

n4(qpost
n )2

)
. For the third term Cov

(
air

2
1,i, bjµ

2
r1,j

)
,

by the definition in (87), we have

Cov
(
air

2
1,i, bjµ

2
r1,j

)

=
1

(n− 1)4



Cov

(
ai

(
−UijWij

θ∗
i (y)

2 + 2θ∗
i (x)

θ∗
i (y)

3W
2
ij

)2
, bjµ

2
r1,j

)
+
∑

k ̸=i,j

Cov
(
ai

(
−UikWik

θ∗
i (y)

2 + 2θ∗
i (x)

θ∗
i (y)

3W
2
ik

)(
−UijWij

θ∗
i (y)

2 + 2θ∗
i (x)

θ∗
i (y)

3W
2
ij

)
, bjµ

2
r1,j

)
+
∑

k ̸=i,j

Cov

(
ai

(
−UikWij

θ∗
i (y)

2 + 2θ∗
i (x)

θ∗
i (y)

3WikWij

)2
, bjµ

2
r1,j

)
+2

∑
k ̸=i,j

Cov
(
ai

(
−UikWik

θ∗
i (y)

2 + 2θ∗
i (x)

θ∗
i (y)

3W
2
ik

)(
−UikWij

θ∗
i (y)

2 + 2θ∗
i (x)

θ∗
i (y)

3WikWij

)
, bjµ

2
r1,j

)


=O

(
1

n6p5n

)
+O

(
1

n5(qpostn )4

)
= O

(
1

n5(qpostn )4

)
.

For the fourth term Cov (air1,iµr1,i, bjr1,jµr1,j), it is analogous to (88), and we can show that

Cov (air1,iµr1,i, bjr1,jµr1,j) = O

(
1

n5(qpostn )4

)
+O

(
1

n4(qpostn )2

)
.

For the fifth term, we have

Cov
(
aiµr1,ir1,i, bjµ

2
r1,j

)
=

1

(n− 1)2
Cov

(
aiµr1,i

(
−UijWij

θ∗i (y)
2
+

2θ∗i (x)

θ∗i (y)
3
W 2

ij

)
, bjµ

2
r1,j

)
= O

(
1

n5(qpostn )4

)
.

By combining the results, we can conclude that

Cov
(
ai(r1,i − µr1,i)

2, bj(r1,j − µr1,j)
2
)
= O

(
1

n5(qpostn )4

)
+O

(
1

n4(qpostn )2

)
.

Therefore, we can conclude that

Cov
(
ai(r0,i + r1,i − µr1,i)

2, bj(r0,j + r1,j − µr1,j)
2
)
= O

(
1

n3(qpostn )2

)
+O

(
1

n2

)
.

F.2 Proof of Lemma B.1

We only show (22) since the remaining terms can be shown with analogous arguments. By

Taylor expansion, we have

M2
i = (ξi + µr1,i)

2 + (r0,i + r1,i − µr1,i)
2 + 2(ξi + µr1,i)(r0,i + r1,i − µr1,i).
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The first term of M2
i is a function of Ti and wi, which is i.i.d. across i. The second and the

third terms follow from Lemma B.3. Therefore, we have

1

n

n∑
i=1

M2
i =

1

n

n∑
i=1

(ξi + µr1,i)
2 + E

(
(r0,i + r1,i − µr1,i)

2
)
+OP

 1

n

√
qpostn

 .

F.3 Proof of Lemma B.3

To show (23), the expectation is zero and the variance is

Var

(
1

n

n∑
i=1

ai(r0,i + r1,i − µr1,i)

)
=

1

n2

n∑
i=1

E
(
a2i (r0,i + r1,i − µr1,i)

2
)

+
1

n2

n∑
i=1

∑
j ̸=i

Cov (ai(r0,i + r1,i − µr1,i), aj(r0,j + r1,j − µr1,j)) = O

(
1

n2qpostn

)

by Lemma F.1 and Lemma F.2. In particular, this implies

1

n

n∑
i=1

ai(r0,i + r1,i − µr1,i) = OP

 1

n

√
qpostn

 .

To show (89), the expectation is

E

[
1

n

n∑
i=1

(r0,i + r1,i − µr1,i)
2

]
= O

(
1

nqpostn

)

and the variance is

Var

(
1

n

n∑
i=1

(r0,i + r1,i − µr1,i)
2

)
=

1

n2

n∑
i=1

Var
(
(r0,i + r1,i − µr1,i)

2
)

+
1

n2

n∑
i=1

∑
j ̸=i

Cov
(
(r0,i + r1,i − µr1,i)

2, (r0,j + r1,j − µr1,j)
2
)

=O

(
1

n3(qpostn )2

)
+O

(
1

n2

)

by Lemma F.1 and Lemma F.2. Therefore,

1

n

n∑
i=1

(r0,i + r1,i − µr1,i)
2 = E

(
(r0,i + r1,i − µr1,i)

2
)
+OP

(
1

√
nnqpostn

)
+OP

(
1

n

)
. (89)
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F.4 Proof of Lemma C.2

To show (35), we decompose it into

1

n

n∑
i=1

MiZ
ssiv
i =

1

n

n∑
i=1

(ξi + µr1,i)Z
ssiv
i +

1

n

n∑
i=1

(Zssiv
i r0,i + Zssiv

i r1,i − Zssiv
i µr1,i).

For the first term, we can show by Lemma C.1 and (19) that

1

n

n∑
i=1

Zssiv
i ξi =OP

(√
nqpren

)
and

1

n

n∑
i=1

Zssiv
i µr1,i = OP

(
qpren√
nqpostn

)
.

For the remaining terms, we show them one by one. For 1
n

∑n
i=1 r0,iZ

ssiv
i , the expectation is

E

[
1

n

n∑
i=1

Zssiv
i r0,i

]
=

1

n(n− 1)

n∑
i=1

E

∑
k ̸=i

Apre
ik (Tk − π)

ξi∑
k ̸=i

Rik


=

1

n(n− 1)

n∑
i=1

E

ξi∑
k ̸=i

Apre
ik (Tk − π)Rik

 ≤ C
min{qpren , qpostn }

qpostn

.

The variance is

Var

(
1

n

n∑
i=1

Zssiv
i r0,i

)
=

1

n2

n∑
i=1

Var (Zssiv
i r0,i) +

1

n2

n∑
i=1

∑
j ̸=i

Cov
(
Zssiv
i r0,i, Z

ssiv
j r0,j

)
.

For the diagonal term, we have

Var (Zssiv
i r0,i) ≤ E

[
(Zssiv

i )2r20,i
]
= E

∑
j ̸=i

Apre
ij (Tj − π)

2

ξ2i

 1

n− 1

∑
j ̸=i

Rij

2
=

ξ2i
(n− 1)2

E

∑
j ̸=i

Apre
ij (Tj − π)2 +

∑
(j,k)

Apre
ij (Tj − π)Apre

ik (Tk − π)

∑
j ̸=i

R2
ij +

∑
(j,k)

RijRik

 | Ti, wi



=
ξ2i

(n− 1)2
E


∑
j ̸=i

Apre
ij (Tj − π)2

∑
j ̸=i

R2
ij +

∑
(j,k)

Apre
ij (Tj − π)Apre

ik (Tk − π)
∑
j ̸=i

R2
ij

+
∑
j ̸=i

Apre
ij (Tj − π)2

∑
(j,k)

RijRik +
∑
(j,k)

Apre
ij A

pre
ik (Tj − π)(Tk − π)

∑
(j,k)

RijRik

| Ti, wi


=

ξ2i
(n− 1)2

E

∑
(j,k)

Apre
ij (Tj − π)2R2

ik +
∑
(j,k)

Apre
ij A

pre
ik (Tj − π)(Tk − π)RijRik | Ti, wi


≤ ξ2i

(n− 1)2

(
C1
n2qpren qpostn

(qpostn )2
+ C2

n2min{qpren , qpostn }2

(qpostn )2

)
≤ C

qpren

qpostn

.
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For the cross terms, we have

Cov
(
Zssiv
i r0,i, Z

ssiv
j r0,j

)
=

1

(n− 1)2
Cov

ξi∑
k ̸=i

Apre
ik (Tk − π)

∑
k ̸=i

Rik, ξj
∑
k ̸=j

Apre
jk (Tk − π)

∑
k ̸=j

Rjk



=
1

(n− 1)2



∑
k ̸=i,j

Cov
(
ξiA

pre
ik (Tk − π)Rik, ξjA

pre
jk (Tk − π)Rjk

)
+
∑

k ̸=i,j

Cov
(
ξiA

pre
ik (Tk − π)Rik, ξjA

pre
jk (Tk − π)Rji

)
+
∑

k ̸=i,j

Cov
(
ξiA

pre
ik (Tk − π)Rij , ξjA

pre
jk (Tk − π)Rjk

)
+
∑
(k,l)

Cov
(
ξiA

pre
ik (Tk − π)Ril, ξjA

pre
jk (Tk − π)Rjl

)


≤C1

nmin{qpren , qpostn }2

n2(qpostn )2
+ C2

nmin{qpren , qpostn }qpren qpostn

n2(qpostn )2
+ C3

n2(qpren )2(qpostn )2

n2(qpostn )2
= O

(
min{qpren , qpostn }2

n(qpostn )2

)
.

Therefore,

Var

(
1

n

n∑
i=1

Zssiv
i r0,i

)
≤ C1

qpren

nqpostn

+ C2
min{qpren , qpostn }2

n(qpostn )2

and thus

1

n

n∑
i=1

Zssiv
i r0,i = OP

(
min{qpren , qpostn }

qpostn

)
+OP

 √
qpren√
nqpostn

 . (90)

For 1
n

∑n
i=1 Z

ssiv
i r1,i, the expectation is

E

[
1

n

n∑
i=1

Zssiv
i r1,i

]
=

1

n(n− 1)2

n∑
i=1

E


∑

k ̸=i

Apre
ik (Tk − π)




∑
k ̸=i

(
−UikWik

θ∗
i (y)

2 + 2θ∗
i (x)

θ∗
i (y)

3W
2
ik

)
+
∑
(k,l)

(
−UikWil

θ∗
i (y)

2 + 2θ∗
i (x)

θ∗
i (y)

3WikWil

)



=
1

n(n− 1)2

n∑
i=1

E

∑
k ̸=i

Apre
ik (Tk − π)

(
−UikWik

θ∗i (y)
2
+

2θ∗i (x)

θ∗i (y)
3
W 2

ik

)
≤Cmin{qpren , qpostn }

n(qpostn )2
.

The variance is

Var

(
1

n

n∑
i=1

Zssiv
i r1,i

)
=

1

n2

n∑
i=1

Var (Zssiv
i r1,i) +

1

n2

n∑
i=1

∑
j ̸=i

Cov
(
Zssiv
i r1,i, Z

ssiv
j r1,j

)
.
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For the diagonal term, we have

Var (Zssiv
i r1,i) ≤ E

[
(Zssiv

i )2r21,i
]
= E

∑
j ̸=i

Apre
ij (Tj − π)2 +

∑
(j,k)

Apre
ij A

pre
ik (Tj − π)(Tk − π)

 r21,i



=
1

(n− 1)4
E


∑
j ̸=i

Apre
ij (Tj − π)2


(∑

j ̸=i

(
−UijWij

θ∗
i (y)

2 + 2θ∗
i (x)

θ∗
i (y)

3W
2
ij

))2

+

(∑
(j,k)

(
−UijWik

θ∗
i (y)

2 + 2θ∗
i (x)

θ∗
i (y)

3WijWik

))2

+2
∑
j ̸=i

(
−UijWij

θ∗
i (y)

2 + 2θ∗
i (x)

θ∗
i (y)

3W
2
ij

) ∑
(j,k)

(
−UijWik

θ∗
i (y)

2 + 2θ∗
i (x)

θ∗
i (y)

3WijWik

)



+
1

(n− 1)4
E


∑
(j,k)

Apre
ij (Tj − π)Apre

ik (Tk − π)



(∑
j ̸=i

(
−UijWij

θ∗
i (y)

2 + 2θ∗
i (x)

θ∗
i (y)

3W
2
ij

))2

+

(∑
(j,k)

(
−UijWik

θ∗
i (y)

2 + 2θ∗
i (x)

θ∗
i (y)

3WijWik

))2

+2
∑
j ̸=i

(
−UijWij

θ∗
i (y)

2 + 2θ∗
i (x)

θ∗
i (y)

3W
2
ij

) ∑
(j,k)

(
−UijWik

θ∗
i (y)

2 + 2θ∗
i (x)

θ∗
i (y)

3WijWik

)





=
1
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E


∑
j ̸=i

Apre
ij (Tj − π)2



∑
j ̸=i

(
−UijWij

θ∗
i (y)

2 + 2θ∗
i (x)

θ∗
i (y)

3W
2
ij
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+
∑
(j,k)

(
−UijWij

θ∗
i (y)

2 + 2θ∗
i (x)

θ∗
i (y)

3W
2
ij

)(
−UikWik

θ∗
i (y)

2 + 2θ∗
i (x)

θ∗
i (y)

3W
2
ik

)
+
∑
(j,k)

(
−UijWik

θ∗
i (y)

2 + 2θ∗
i (x)

θ∗
i (y)

3WijWik

)2
+2

∑
k ̸=j

(
−UikWik

θ∗
i (y)

2 + 2θ∗
i (x)

θ∗
i (y)

3W
2
ik

)(
−UijWik

θ∗
i (y)

2 + 2θ∗
i (x)

θ∗
i (y)

3WijWik

)





+
1

(n− 1)4
E


∑
(j,k)

Apre
ij (Tj − π)Apre

ik (Tk − π)



(
−UijWij

θ∗
i (y)

2 + 2θ∗
i (x)

θ∗
i (y)

3W
2
ij

)(
−UikWik

θ∗
i (y)

2 + 2θ∗
i (x)

θ∗
i (y)

3W
2
ik

)
+
(
−UijWik

θ∗
i (y)

2 + 2θ∗
i (x)

θ∗
i (y)

3WijWik

)2
+
∑

l ̸=j,k

(
−UilWij

θ∗
i (y)

2 + 2θ∗
i (x)

θ∗
i (y)

3WilWij

)(
−UilWik

θ∗
i (y)

2 + 2θ∗
i (x)

θ∗
i (y)
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)
+2
∑
l ̸=i

(
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θ∗
i (y)

2 + 2θ∗
i (x)

θ∗
i (y)

3W
2
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)(
−UijWik

θ∗
i (y)

2 + 2θ∗
i (x)

θ∗
i (y)

3WijWik

)




≤ C1

n3qpren (qpostn )2

n4(qpostn )4
+ C2

n3min{qpostn , qpren }2qpostn

n4(qpostn )4
= O

(
qpren

n(qpostn )2

)
.

For the cross terms, we have

Cov
(
Zssiv
i r1,i, Z

ssiv
j r1,j

)
=

1

(n− 1)4
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Cov

(∑
k ̸=i

Apre
ik (Tk − π)

∑
k ̸=i

(
−UikWik

θ∗
i (y)

2 + 2θ∗
i (x)

θ∗
i (y)

3W
2
ik

)
,
∑
k ̸=j

Apre
jk (Tk − π)

∑
k ̸=j

(
−UjkWjk

θ∗
j (y)

2 +
2θ∗

j (x)

θ∗
j (y)

3W
2
jk
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(∑
k ̸=i

Apre
ik (Tk − π)

∑
k ̸=i

(
−UikWik

θ∗
i (y)

2 + 2θ∗
i (x)

θ∗
i (y)

3W
2
ik

)
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∑
k ̸=j
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jk (Tk − π)

∑
(k,l)

(
−UjkWjl

θ∗
j (y)

2 +
2θ∗

j (x)

θ∗
j (y)

3WjkWjl
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(∑
k ̸=i

Apre
ik (Tk − π)

∑
(k,l)

(
−UikWil

θ∗
i (y)

2 + 2θ∗
i (x)

θ∗
i (y)
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)
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∑
k ̸=j
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jk (Tk − π)

∑
k ̸=j

(
−UjkWjk

θ∗
j (y)
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2θ∗

j (x)

θ∗
j (y)

3W
2
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(∑
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Apre
ik (Tk − π)

∑
(k,l)

(
−UikWil

θ∗
i (y)

2 + 2θ∗
i (x)

θ∗
i (y)
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)
,
∑
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Apre
jk (Tk − π)

∑
(k,l)

(
−UjkWjl

θ∗
j (y)

2 +
2θ∗

j (x)

θ∗
j (y)

3WjkWjl
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=
1

(n− 1)4



∑
(k,l,h)

Cov
(
Apre

ik (Tk − π)
(
−UilWil

θ∗
i (y)

2 + 2θ∗
i (x)

θ∗
i (y)

3W
2
ik

)
, Apre

jk (Tk − π)
(
−UjhWjh

θ∗
j (y)

2 +
2θ∗

j (x)

θ∗
j (y)

3W
2
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))
+
∑

(k,l,h)

Cov
(
Apre

ik (Tk − π)
(
−UilWil

θ∗
i (y)

2 + 2θ∗
i (x)

θ∗
i (y)

3W
2
il

)
, Apre

jh (Th − π)
(
−UjkWjh

θ∗
j (y)

2 +
2θ∗

j (x)

θ∗
j (y)

3WjkWjh

))
+
∑

(k,l,h)

Cov
(
Apre

ik (Tk − π)
(
−UikWih

θ∗
i (y)

2 + 2θ∗
i (x)

θ∗
i (y)

3WikWih

)
, Apre

jh (Th − π)
(
−UjlWjl

θ∗
j (y)

2 +
2θ∗

j (x)

θ∗
j (y)

3W
2
jl

))
+
∑

(k,l,h)

Cov
(
Apre

ik (Tk − π)
(
−UilWih

θ∗
i (y)

2 + 2θ∗
i (x)

θ∗
i (y)

3WilWih

)
, Apre

jk (Tk − π)
(
−UjlWjh

θ∗
j (y)

2 +
2θ∗

j (x)

θ∗
j (y)

3WjlWjh

))


≤ C1

n3(qpren )2(qpostn )2

n4(qpostn )4
+ C2

n3qpren min{qpren , qpostn }(qpostn )2

n4(qpostn )4
+ C3

n3(qpren )2(qpostn )4

n4(qpostn )4
= O

(
(qpren )2

n(qpostn )2

)
.

Therefore,

Var

(
1

n

n∑
i=1

Zssiv
i r1,i

)
≤ C1

qpren

n2(qpostn )2
+ C2

(qpren )2

n(qpostn )2

and thus

1

n

n∑
i=1

Zssiv
i r1,i = OP

(
min{qpren , qpostn }

n(qpostn )2

)
+OP

(√
qpren

nqpostn

)
+OP

(
qpren√
nqpostn

)
. (91)

By combining with (90) and (91),

1

n

n∑
i=1

Zssiv
i (r0,i + r1,i) = OP

(
min{qpren , qpostn }

qpostn

)
+OP

(
qpren√
nqpostn

)
+OP

 √
qpren√
nqpostn

 . (92)

In particular, this implies that

1

n

n∑
i=1

MiZ
ssiv
i = E [Zssiv

i (r0,i + r1,i − µr1,i)] +OP
(√
nqpren

)
.

F.5 Proof of Lemma E.3

By the decomposition, we have

1

n

n∑
i=1

(Zalt
i − π)Mi =

1

n

n∑
i=1

(Zalt
i − π)ξi +

1

n

n∑
i=1

(Zalt
i − π)r0,i +

1

n

n∑
i=1

(Zalt
i − π)r1,i.

126



First, by Lemma E.2, we have

1

n

n∑
i=1

(Zalt
i − π)ξi =

1

n

n∑
i=1

(Ti − π)E

[
Apre

ij ξj

qpren g0(j)
| wi

]
+OP

(
1

√
n
√
nqpren

)
= OP

(
1√
n

)
. (93)

Next, for 1
n

∑n
i=1(Z

alt
i − π)r0,i, we rewrite it as

1

n

n∑
j=1

(Tj − π)

n∑
i ̸=j

Apre
ij r0,i

Ni
= S0

1 − S0
2

where

S0
1 =

1

n

n∑
j=1

(Tj − π)

n∑
i ̸=j

Apre
ij r0,i

(n− 1)qpren g0(i)
, (94)

S0
2 =

1

n

n∑
j=1

(Tj − π)

n∑
i ̸=j

Apre
ij r0,i (Ni − (n− 1)qpren g0(i))

(n− 1)qpren g0(i)Ni
. (95)

For S0
1 , the expectation is

E
[
S0
1

]
= E

 1

n

n∑
j=1

(Tj − π)

n∑
i ̸=j

Apre
ij r0,i

(n− 1)qpren g0(i)

 =
1

n

n∑
j=1

E

(Tj − π)

n∑
i ̸=j

Apre
ij ξi

1
n−1Rij

(n− 1)qpren g0(i)

 ≍ min{qpren , qpostn }
nqpren qpostn

,

and the variance is

Var
[
S0
1

]
= Var

 1

n

n∑
j=1

(Tj − π)

n∑
i ̸=j

Apre
ij r0,i

(n− 1)qpren g0(i)



=
1

(n− 1)2(nqpren )2



n∑
j=1

n∑
i ̸=j

Var
(
(Tj−π)Apre

ij r0,i
g0(i)

)
+

n∑
j=1

∑
(i1,i2)

Cov
(
(Tj−π)Apre

i1jr0,i1
g0(i1)

,
(Tj−π)Apre

i2jr0,i2
g0(i2)

)
+
∑

(j1,j2)

∑
i ̸=j1,j2

Cov
(
(Tj1

−π)Apre
ij1

r0,i
g0(i)

,
(Tj2

−π)Apre
ij2

r0,i
g0(i)

)
+
∑

(j1,j2)

∑
(i1,i2)
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(
(Tj1

−π)Apre
i1j1

r0,i1
g0(i1)

,
(Tj2

−π)Apre
i2j2

r0,i2
g0(i2)

)


where we calculate each term:

Var

(
(Tj − π)

Apre
ij r0,i

g0(i)

)
≤ 1

(n− 1)2
E

(Tj − π)2

g0(i)2
Apre

ij ξ
2
i

∑
l ̸=i

R2
il

 ≍ qpostn

nqpostn

,

Cov

(
(Tj − π)Apre

i1j
r0,i1

g0(i1)
,
(Tj − π)Apre

i2j
r0,i2

g0(i2)

)

=E

[
(Tj − π)2

Apre
i1j
r0,i1

g0(i1)

Apre
i2j
r0,i2

g0(i2)

]
− E

[
(Tj − π)Apre

i1j
r0,i1

g0(i1)

]
E

[
(Tj − π)Apre

i2j
r0,i2
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]
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=
1

(n− 1)2

E
 (Tj − π)2

g0(i1)g0(i2)

∑
l ̸=i1,i2,j

ξi1ξi2A
pre
i1j
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i2j
Ri1lRi2l

− E

[
(Tj − π)Apre

i1j
ξi1Ri1j

g0(i1)

]
E

[
(Tj − π)Apre

i2j
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]
≍(qpren )2

n
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n2(qpostn )2
,

Cov

(
(Tj1 − π)Apre

ij1
r0,i

g0(i)
,
(Tj2 − π)Apre

ij2
r0,i

g0(i)

)

=E

[
(Tj1 − π)(Tj2 − π)
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ij1
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ij2
r20,i

g0(i)2

]
− E

[
(Tj1 − π)Apre
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g0(i)

]
E

[
(Tj2 − π)Apre

ij2
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g0(i)

]

=
1

(n− 1)2

(
E

[
(Tj1 − π)(Tj2 − π)
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ij1
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ij2
ξ2iRij1Rij2

g0(i)2

]
− E

[
(Tj1 − π)Apre

ij1
ξiRij1

g0(i)

]
E

[
(Tj2 − π)Apre

ij2
ξiRij2

g0(i)

])

≍min{qpren , qpostn }2

n2(qpostn )2
,

Cov

(
(Tj1 − π)Apre

i1j1
r0,i1

g0(i1)
,
(Tj2 − π)Apre

i2j2
r0,i2

g0(i2)

)

=E

[
(Tj1 − π)(Tj2 − π)

Apre
i1j1

r0,i1

g0(i1)

Apre
i2j2

r0,i2

g0(i2)

]
− E

[
(Tj1 − π)Apre

i1j1
r0,i1

g0(i1)

]
E

[
(Tj2 − π)Apre

i2j2
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g0(i2)

]

=
1

(n− 1)2
E

[
(Tj1 − π)(Tj2 − π)

g0(i1)g0(i2)
ξi1ξi2A

pre
i1j1

Ri1j2A
pre
i2j2

Ri2j1

]
≍ (qpren )2

n2
. (96)

By combining these terms in (96), we have

S0
1 = E(S0

1) + oP

(
1

nmax{qpren , qpostn }

)
. (97)

Recall (77) that

Apre
ij r0,i(Ni − (n− 1)qpren g0(i))

qpren g0(i)Ni
=
Apre

ij r0,i((Ni −Apre
ij + 1)− (n− 1)qpren g0(i))

qpren g0(i)(Ni −Apre
ij + 1)

.

Define

Bij =
Apre

ij r0,i (Ni − (n− 1)qpren g0(i))

(n− 1)qpren g0(i)Ni

and thus

S0
2 =

1

n

n∑
j=1

(Tj − π)

n∑
i ̸=j

Bij .

We bound it in L2 norm:

E
[
(S0

2)
2
]
= E

 1

n

n∑
j=1

(Tj − π)

n∑
i ̸=j

Bij

2 =
1

n2

n∑
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E

(Tj − π)2

 n∑
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ij +

∑
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Bi1jBi2j
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+
1

n2

∑
(j,k)

E

(Tj − π)(Tk − π)

 n∑
i ̸=j,k

BijBik +

n∑
(i1,i2)

Bi1jBi2k

 .
We analyze these terms one by one. Conditional on w, Apre

ij and Ni−(n−1)qpren g0(i)
Ni

are independent.

For E
(
(Tj − π)2B2

ij

)
, we have

E
(
(Tj − π)2B2
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)
=E

E [(Tj − π)2Apre
ij r

2
0,i | w

]
E

((Ni −Apre
ij + 1)− (n− 1)qpren g0(i)

(n− 1)qpren g0(i)(Ni −Apre
ij + 1)
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| w


≤C 1

(nqpren )3
1

(n− 1)2
E

(Tj − π)2Apre
ij ξ

2
i

∑
k ̸=i

R2
ik

 ≍ 1

n4(qpren )2qpostn

by (79) and analogous argument to (96). Conditional on w, Apre
ij , Apre

jk ,
Nj−(n−1)qpren g0(j)

Nj
and

Nk−(n−1)qpre
n g0(k)

Nk
are independent. For E((Tj − π)2Bi1jBi2j), we have

E
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)
=E
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E
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E
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]
E
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1
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where by (78) and analogous argument to (96). For E((Tj − π)(Tk − π)BijBik), we have
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[
E
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E
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E
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by (78) and analogous argument to (96). By combining these results, we have
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For S1
13, we have

Cov

(
(Tj1 − π)Apre

ij1
r1,i

g0(i)
,
(Tj2 − π)Apre

ij2
r1,i

g0(i)

)

=E

[
(Tj1 − π)(Tj2 − π)

g0(i)2
Apre

ij1
Apre

ij2
r21,i

]
− E

[
(Tj1 − π)Apre

ij1
r1,i

g0(i)

]
E

[
(Tj2 − π)Apre

ij2
r1,i

g0(i)

]

=
1

(n− 1)4
E


(Tj1

−π)(Tj2
−π)

g0(i)2
Apre

ij1
Apre

ij2



(
−Uij1

Wij1

θ∗
i (y)

2 + 2θ∗
i (x)

θ∗
i (y)

3W
2
ij1

)(
−Uij2Wij2

θ∗
i (y)

2 + 2θ∗
i (x)

θ∗
i (y)

3W
2
ij2

)
+2
∑
l ̸=i

(
−Uij1Wil

θ∗
i (y)

2 + 2θ∗
i (x)

θ∗
i (y)

3W
2
il

)(
−Uij1Wij2

θ∗
i (y)

2 + 2θ∗
i (x)

θ∗
i (y)

3Wij1Wij2

)
+
(
−Uij1Wij2

θ∗
i (y)

2 + 2θ∗
i (x)

θ∗
i (y)

3Wij1Wij2

)2
+

∑
l ̸=j1,j2

(
−UilWij1

θ∗
i (y)

2 + 2θ∗
i (x)

θ∗
i (y)

3WilWij1

)(
−UilWij2

θ∗
i (y)

2 + 2θ∗
i (x)

θ∗
i (y)

3WilWij2

)




− E

[
(Tj1 − π)Apre

ij1
r1,i

g0(i)

]
E

[
(Tj2 − π)Apre

ij2
r1,i

g0(i)

]

≍min{qpren , qpostn }2

(nqpostn )3
. (102)

For S1
14, we have

Cov

(
(Tj − π)Apre

i1j
r1,i1

g0(i1)
,
(Tk − π)Apre

i2k
r1,i2

g0(i2)

)

= E

[
(Tj − π)(Tk − π)

Apre
i1j
Apre

i2k
r1,i1r1,i2

g0(i1)g0(i2)

]
− E

[
(Tj − π)Apre

i1j
r1,i1

g0(i1)

]
E

[
(Tk − π)Apre

i2k
r1,i2

g0(i2)

]

=
1

(n− 1)4
E

 (Tj−π)(Tk−π)
g0(i1)g0(i2)

Apre
i1j
Apre

i2k


∑

l ̸=i1,i2

(
−Ui1jWi1l

θ∗
i1
(y)2 +

2θ∗
i1
(x)

θ∗
i1
(y)3Wi1jWi1l

)(
−Ui2kWi2l

θ∗
i2
(y)2 +

2θ∗
i2
(x)

θ∗
i2
(y)3Wi2kWi2l

)
+
∑

k1 ̸=i1

(
−Ui1k1Wik1

θ∗
i1
(y)2 +

2θ∗
i1
(x)

θ∗
i1
(y)3W

2
i1k1

)(
−Ui2jWi2k

θ∗
i2
(y)2 +

2θ∗
i2
(x)

θ∗
i2
(y)3Wi2jWi2k

)
+
(
−Ui1jWi1k

θ∗
i1
(y)2 +

2θ∗
i1
(x)

θ∗
i1
(y)3Wi1jWi1k

) ∑
k2 ̸=i2

(
−Ui2k2

Wi2k2

θ∗
i2
(y)2 +

2θ∗
i2
(x)

θ∗
i2
(y)3W

2
i2k2

)



≍ min{qpren , qpostn }2n(qpostn )2

n4(qpostn )4
+

min{qpren , qpostn }nqpren (qpostn )2

n4(qpostn )4

≍ min{qpren , qpostn }qpren

n3(qpostn )2
. (103)

By combining these results, we have
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Combining (93) and (107) together completes the proof.

Also, we can show that by Lemma E.2 and (19),
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